Сегодня: 22.12.2024
RU / EN
Последнее обновление: 30.10.2024
Ex vivo визуализация глиальных опухолей головного мозга человека с помощью кросс-поляризационной оптической когерентной томографии: первые результаты

Ex vivo визуализация глиальных опухолей головного мозга человека с помощью кросс-поляризационной оптической когерентной томографии: первые результаты

К.С. Яшин, Е.В. Губарькова, Е.Б. Киселева, С.С. Кузнецов, М.М. Карабут, Л.Б. Тимофеева, Л.Б. Снопова, А.А. Моисеев, И.А. Медяник, Л.Я. Кравец, Н.Д. Гладкова
Ключевые слова: кросс-поляризационная оптическая когерентная томография; КП ОКТ; головной мозг; глиома; астроцитома; глиобластома.
2016, том 8, номер 4, стр. 14.

Полный текст статьи

html pdf
3585
2634

Оптическая когерентная томография (ОКТ) становится перспективным методом оптической диагностики в нейроонкологии. В настоящей работе представлены первые результаты исследования глиальных опухолей человека различной степени злокачественности методом кросс-поляризационной ОКТ (КП ОКТ), позволяющим регистрировать изменения рассеяния и поляризации света при прохождении через ткань и получать более широкий спектр информации о структуре опухоли по сравнению с традиционной ОКТ.

Цель исследования — оценить возможности метода КП ОКТ в визуализации глиальных опухолей головного мозга человека с разной степенью злокачественности.

Материалы и методы. Исследование проведено на материале операционных биопсий (ex vivo образцы) от 18 пациентов с глиальными опухолями головного мозга разной степени злокачественности. На разработанном в Институте прикладной физики РАН (Нижний Новгород) скоростном спектральном КП ОКТ-устройстве было проанализировано 79 образцов ткани и получено 361 КП ОКТ-изображение.

Полученные КП ОКТ-изображения сопоставляли с данными гистологического исследования. Плоскость КП ОКТ-сканирования эквидистантно совпадала с плоскостью гистологического среза.

Результаты. Установлена связь характера КП ОКТ-изображений ткани мозга и глиальных опухолей с их морфологической структурой. Проведена сравнительная оценка ОКТ-сигнала от глиальных опухолей различной степени злокачественности и от неизмененной мозговой ткани.

Заключение. Морфологические особенности белого вещества головного мозга и глиом различной степени злокачественности могут быть дифференцированы на КП ОКТ-изображениях по таким характеристикам ОКТ-сигнала, как его уровень, однородность и характер затухания.

  1. Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A., Fujimoto J.G. Optical coherence tomography. Science 1991; 254(5035): 1178–1181, https://doi.org/10.1126/science.1957169.
  2. Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications 1995; 117(1–2): 43–48, https://doi.org/10.1016/0030-4018(95)00119-s .
  3. Su M.I., Chen C.Y., Yeh H.I., Wang K.T. Concise review of optical coherence tomography in clinical practice. Acta Cardiol Sin 2016; 32(4): 381–386.
  4. Osiac E., Bălşeanu T.A., Cătălin B., Mogoantă L., Gheonea C., Dinescu S.N., Albu C.V., Cotoi B.V., Tica O.S., Sfredel V. Optical coherence tomography as a promising imaging tool for brain investigations. Rom J Morphol Embryol 2014; 55(2 Suppl): 507–512.
  5. Murthy R.K., Haji S., Sambhav K., Grover S., Chalam K.V. Clinical applications of spectral domain optical coherence tomography in retinal diseases. Biomed J 2016; 39(2): 107–120, https://doi.org/10.1016/j.bj.2016.04.003.
  6. Zhang Y., Chen Y., Yu Y., Xue X., Tuchin V.V., Zhu D. Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro. J Biomed Opt 2013; 18(7): 077003, https://doi.org/10.1117 /1.jbo.18.7.077003.
  7. Böhringer H.J., Boller D., Leppert J., Knopp U., Lankenau E., Reusche E., Hüttmann G., Giese A. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers Surg Med 2006; 38(6): 588–597, https://doi.org/10.1002/lsm.20353.
  8. Böhringer H.J., Lankenau E., Stellmacher F., Reusche E., Hüttmann G., Giese A. Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochir (Wien) 2009; 151(5): 507–517, https://doi.org/10.1007/s00701-009-0248-y.
  9. Kut C., Chaichana K.L., Xi J., Raza S.M., Ye X., McVeigh E.R., Rodriguez F.J., Quiñones-Hinojosa A., Li X. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Science Translational Medicine 2015; 7: 292ra100, https://doi.org/10.1126/scitranslmed.3010611.
  10. Sanai N., Berger M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008; 62(4): 753–764, https://doi.org/10.1227/01.neu.0000318159.21731.cf .
  11. Sanai N., Polley M.Y., McDermott M.W., Parsa A.T., Berger M.S. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 2011; 115(1): 3–8, https://doi.org/10.3171/2011.2.jns10998.
  12. Анохина Ю.Е., Гайдар Б.В., Мартынов Б.В., Свистов Д.В., Папаян Г.В., Григорьевский Д.И. Про­гно­с­тическая значимость объема хирургического вмешательства в условиях применения интраоперационной флуоресцентной диагностики у пациентов со злока­чественными глиомами головного мозга. Вестник рос­сийской военно-медицинской академии 2014; 1(45): 19–24.
  13. Bizheva K., Unterhuber A., Hermann B., Povazay B., Sattmann H., Fercher A.F., Drexler W., Preusser M., Budka H., Stingl A., Le T. Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J Biomed Opt 2005; 10(1): 11006, https://doi.org/10.1117/1.1851513.
  14. Kantelhardt S.R., Finke M., Schweikard A., Giese A. Evaluation of a completely robotized neurosurgical operating microscope. Neurosurgery 2013; 72: A19–A26, https://doi.org/10.1227/NEU.0b013e31827235f8.
  15. Finke M., Kantelhardt S., Schlaefer A., Bruder R., Lankenau E., Giese A., Schweikard A. Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography. Int J Med Robot 2012; 8(3): 327–336, https://doi.org/10.1002/rcs.1425.
  16. Lankenau E., Klinger D., Winter C., Malik A., Müller H.H., Oelckers S., Pau H.-W., Just T., Hüttmann G. Combining optical coherence tomography (OCT) with an operating microscope. In: Advances in medical engineering. Vol 114. Springer Berlin Heidelberg; 2007; p. 343–348, https://doi.org/10.1007/978-3-540-68764-1_57.
  17. Nakaji H., Kouyama N., Muragaki Y., Kawakami Y., Iseki H. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. J Neurosci Methods 2008; 174(1): 82–90, https://doi.org/10.1016/j.jneumeth.2008.07.004.
  18. de Boer J.F., Srinivas S.M., Park B.H., Pham T.H., Zhongping C., Milner T.E., Nelson J.S. Polarization effects in optical coherence tomography of various biological tissues. IEEE J Sel Top Quantum Electron 1999; 5(4): 1200–1204, https://doi.org/10.1109/2944.796347.
  19. Kuranov R., Sapozhnikova V., Turchin I., Zagainova E., Gelikonov V., Kamensky V., Snopova L., Prodanetz N. Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt Express 2002; 10(15): 707–713, https://doi.org/10.1364/oe.10.000707.
  20. Chen W., Wang D., Du X., He Y., Chen S., Shao Q., Ma C., Huang B., Chen A., Zhao P., Qu X., Li X. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol 2015; 32(3): 43, https://doi.org/10.1007/s12032-015-0487-0.
  21. Wang H., Akkin T., Magnain C., Wang R., Dubb J., Kostis W.J., Yaseen M.A., Cramer A., Sakadžić S., Boas D. Polarization sensitive optical coherence microscopy for brain imaging. Opt Lett 2016; 41(10): 2213–2216, https://doi.org/10.1364/ol.41.002213.
  22. Gladkova N., Kiseleva E., Robakidze N., Balalaeva I., Karabut M., Gubarkova E., Feldchtein F. Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. J Biophotonics 2013; 6(4): 321–329, https://doi.org/10.1002/jbio.201200059.
  23. Gladkova N., Kiseleva E., Streltsova O., Prodanets N., Snopova L., Karabut M., Gubarkova E., Zagaynova E. Combined use of fluorescence cystoscopy and cross-polarization OCT for diagnosis of bladder cancer and correlation with immunohistochemical markers. J Biophotonics 2013; 6(9): 687–698. https://doi.org/10.1002/jbio.201200105.
  24. Gubarkova E.V., Dudenkova V.V., Feldchtein F.I., Timofeeva L.B., Kiseleva E.B., Kuznetsov S.S., Shakhov B.E., Moiseev A.A., Gelikonov V.M., Gelikonov G.V., Vitkin A., Gladkova N.D. Multi-modal optical imaging characterization of atherosclerotic plaques. J Biophotonics 2015, https://doi.org/10.1002/jbio.201500223.
  25. Gelikonov V.M., Gelikonov G.V., Shilyagin P.A. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Optics and Spectroscopy 2009; 106(3): 459–465, https://doi.org/10.1134/s0030400x09030242.
  26. Moiseev A.A., Gelikonov G.V., Terpelov D.A., Shilyagin P.A., Gelikonov V.M. Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media. Laser Physics Letters 2013; 10(12): 125601, https://doi.org/10.1088/1612-2011/10/12/125601.
  27. Yashin К.S., Karabut M.M., Fedoseeva V.V., Khalansky A.S., Matveev L.A., Elagin V.V., Kuznetsov S.S., Kiseleva E.B., Kravets L.Y., Medyanik I.А., Gladkova N.D. Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study). Sovremennye tehnologii v medicine 2016; 8(1): 73–81. https://doi.org/10.17691/stm2016.8.1.10.
  28. Тучин В.В. Лазеры и волоконная оптика в биоме­дицинских исследованиях. М: ФИЗМАТЛИТ; 2010; 488 c.
  29. Angiogenesis. In: Brain tumor pathology: current diagnostic hotspots and pitfalls. Springer Netherlands; 2006; p. 189–198, https://doi.org/10.1007/1-4020-3998-0_15.
  30. Bevilacqua F., Piguet D., Marquet P., Gross J.D., Tromberg B.J., Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt 1999; 38(22): 4939–4950, https://doi.org/10.1364/ao.38.004939.
  31. Amberger V.R., Hensel T., Ogata N., Schwab M.E. Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res 1998; 58(1): 149–158.
  32. Alaminos M., Dávalos V., Ropero S., Setién F., Paz M.F., Herranz M., Fraga M.F., Mora J., Cheung N.K., Gerald W.L., Esteller M. EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res 2005; 65(7): 2565–2571, https://doi.org/10.1158/0008-5472.can-04-4283.
  33. Brat D.J., Perry A. Astrocytic and oligodendroglial tumor. In: Practical surgical neuropathology. New York: Churchill Livingstone; 2010; p. 63–102, https://doi.org/10.1016/b978-0-443-06982-6.00005-5.
  34. Rodriguez C.L., Szu J.I., Eberle M.M., Wang Y., Hsu M.S., Binder D.K., Park B.H. Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography. Neurophotonics 2014; 1(2): 025004, https://doi.org/10.1117/1.NPh.1.2.025004.
  35. Miller C.R., Perry A. Glioblastoma. Arch Pathol Lab Med 2007; 131(3): 397–406.
Yashin K.S., Gubarkova E.V., Kiseleva E.B., Kuznetsov S.S., Karabut M.M., Timofeeva L.B., Snopova L.B., Moiseev A.A., Medyanik I.А., Kravets L.Ya., Gladkova N.D. Ex vivo Visualization of Human Gliomas with Cross-Polarization Optical Coherence Tomography: Pilot Study. Sovremennye tehnologii v medicine 2016; 8(4): 14, https://doi.org/10.17691/stm2016.8.4.02


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank