Сегодня: 22.11.2024
RU / EN
Последнее обновление: 30.10.2024
Вирусные векторы для доставки генетического материала в клетку и их использование в нейробиологии (обзор)

Вирусные векторы для доставки генетического материала в клетку и их использование в нейробиологии (обзор)

Е.А. Епифанова, Е.В. Борисова, В.А. Салина, А.А. Бабаев
Ключевые слова: вирусные векторы; аденоассоциированные вирусные векторы; хелперные плазмиды; трансфекция; нейробиология.
2017, том 9, номер 1, стр. 162.

Полный текст статьи

html pdf
17218
8643

Вирусные векторы — современный инструмент для доставки генетического материала в клетку. Рассмотрены различные типы вирусных векторов, таких как ретровирусные, аденоассоциированные и лентивирусные векторные системы, векторные системы на основе аденовирусов, вируса герпеса простого и поксвирусов. Более подробно представлены аденоассоциированные векторные системы. Их основные преимущества (способность интегрировать целевой ген в нужное место генома хозяина, что предотвращает нежелательные мутации; встраивание как в делящиеся, так и в покоящиеся клетки; широкий профиль трансдукции; низкий иммунный ответ; сильная и устойчивая экспрессия трансгена) сделали эти векторы популярным и универсальным инструментом для доставки генов in vitro и in vivo. Показаны возможности применения вирусных векторов в нейробиологии.

  1. Daya S., Berns K.I. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21(4): 583–593, https://doi.org/10.1128/cmr.00008-08.
  2. During M.J., Leone P. Adeno-associated virus vectors for gene therapy of neurodegenerative disorders. Clin Neurosci 1995; 3(5): 292–300.
  3. Goff S.P., Berg P. Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells. Cell 1976; 9(4): 695–705, https://doi.org/10.1016/0092-8674(76)90133-1.
  4. Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy — a review. Stem Cells Dev 2004; 13(1): 133–145, https://doi.org/10.1089/154732804773099335.
  5. Seow Y., Wood M.J. Biological gene delivery vehicles: beyond viral vector. Mol Ther 2009; 17(5): 767–777, https://doi.org/10.1038/mt.2009.41.
  6. Новикова Н.А. Хранение и реализация генетической информации вирусов. Учебно-методический материал по программе повышения квалификации «Хранение и об­­ра­ботка информации в биологических системах». Н. Новгород; 2007.
  7. Nienhuis A.W. Development of gene therapy for blood disorders. Blood 2008; 111(9): 4431–4444, https://doi.org/10.1182/blood-2007-11-078121.
  8. McClure C., Cole K.L.H., Wulff P., Klugmann M., Murray A.J. Production and titering of recombinant adeno-associated viral vectors. J Vis Exp 2011; 57: e3348, https://doi.org/10.3791/3348.
  9. Davidson B.L., Stein C.S., Heth J.A., Martins I., Kotin R.M., Derksen T.A., Zabner J., Ghodsi A., Chiorini J.A. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 2000; 97(7): 3428–3432, https://doi.org/10.1073/pnas.97.7.3428.
  10. Boeckle S., Wagner E. Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J 2006; 8(4): E731–E742, https://doi.org/10.1208/aapsj080483.
  11. Giacca M., Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release 2012; 161: 377–388, https://doi.org/10.1016/j.jconrel.2012.04.008.
  12. Daniel R., Smith J.A. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gen Ther 2007; 19: 557–556, https://doi.org/10.1089/hum.2007.148.
  13. Nemunaitis J., Edelman J. Selectively replicating viral vectors. Cancer Gene Therapy 2002; 9: 987–1000, https://doi.org/10.1038/sj.cgt.7700547.
  14. Verma I.M., Naldini L., Kafri T., Miyoshi H., Takahashi M., Blömer U., Somia N., Wang L., Gage F.H. Gene therapy: promises, problems and prospects. Nature 1997; 389(6648): 239–242, https://doi.org/10.1007/978-3-642-56947-0_13.
  15. Lode H.N., Reisfeld R.A. Targeted cytokines for cancer immunotherapy. Immunol Res 2000; 21(2–3): 279–288, https://doi.org/10.1385/ir:21:2-3:279.
  16. Jolly D. Viral vector systems for gene therapy. Cancer Gene Ther 1994; 1(1): 51–64.
  17. Verhoeyen E., Cosset F.L. Surface-engineering of lentiviral vectors. J Gene Med 2004; 6(S1): 83–94, https://doi.org/10.1002/jgm.494.
  18. Zhang X.Y., La Russa V.F., Reiser J. Transduction of bonemarrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 2004; 78(3): 1219–1229, https://doi.org/10.1128/jvi.78.3.1219-1229.2004.
  19. Federici T., Kutner R., Zhang X.Y., Kuroda H., Tordo N., Boulis N.M., Reiser J. Comparative analysis of HIV-1-based lentiviral vectors bearing lyssavirus glycoproteins for neuronal gene transfer. Genet Vaccines Ther 2009; 7(1), https://doi.org/10.1186/1479-0556-7-1.
  20. Tang Y.Q., Yuan J., Osapay G., Osapay K., Tran D., Miller C.J., Ouellette A.J., Selsted M.E. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 1999; 286(5439): 498–502, https://doi.org/10.1126/science.286.5439.498.
  21. Frecha C., Szécsi J., Cosset F.L., Verhoeyen E. Strategies for targeting lentiviral vectors. Curr Gene Ther 2008; 8(6): 449–460, https://doi.org/10.2174/156652308786848003.
  22. Cockrell A.S., Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007; 36(3): 184–204, https://doi.org/10.1007/s12033-007-0010-8.
  23. Pluta K., Kacprzak M.M. Use of HIV as a gene transfer vector. Acta Biochim Pol 2009; 56(4): 531–595.
  24. Cronin J., Zhang X.Y., Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5(4): 387–398, https://doi.org/10.2174/1566523054546224.
  25. Wanisch K., Yáñez-Muñoz R.J. Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 2009; 17(8): 1316–1332, https://doi.org/10.1038/mt.2009.122.
  26. Coura R. Viral vectors in neurobiology: therapeutic and research applications. In: Molecular Virology. Moses P. Adoga (editor). InTech; 2012; p. 75–89, https://doi.org/10.5772/32492.
  27. Russell W.C. Adenoviruses: update on structure and function. J Gen Virol 2009; 90(1): 1–20, https://doi.org/10.1099/vir.0.003087-0.
  28. Roberts D.M., Nanda A., Havenga M.J., Abbink P., Lynch D.M., Ewald B.A., Liu J., Thorner A.R., Swanson P.E., Gorgone D.A., Lifton M.A., Lemckert A.A., Holterman L., Chen B., Dilraj A., Carville A., Mansfield K.G., Goudsmit J., Barouch D.H. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441(7090): 239–243, https://doi.org/10.1038/nature04721.
  29. Segerman A., Arnberg N., Erikson A., Lindman K., Wadell G. There are two different species B adenovirus receptors: sBAR, common to species B1 and B2 adenoviruses, and sB2AR, exclusively used by species B2 adenoviruses. J Virol 2003; 77(2): 1157–1162, https://doi.org/10.1128/jvi.77.2.1157-1162.2003.
  30. Pichla-Gollon S.L., Lin S.W., Hensley S.E., Lasaro M.O., Herkenhoff-Haut L., Drinker M., Tatsis N., Gao G.P., Wilson J.M., Ertl H.C., Bergelson J.M. Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol 2009; 83(11): 5567–5573, https://doi.org/10.1128/jvi.00405-09.
  31. Zaiss A.K., Machado H., Herschman H.R. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem 2009; 108(4): 778–790, https://doi.org/10.1002/jcb.22328.
  32. Sakurai F. Development and evaluation of a novel gene delivery vehicle composed of adenovirus serotype 35. Biol Pharm Bull 2008; 31(10): 1819–1825, https://doi.org/10.1248/bpb.31.1819.
  33. Sharma A., Li X., Bangari D.S., Mittal S.K. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143(2): 184–194, https://doi.org/10.1016/j.virusres.2009.02.010.
  34. Akli S., Caillaud C., Vigne E., Stratford-Perricaudet L.D., Poenaru L., Perricaudet M., Kahn A., Peschanski M.R. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 1993; 3(3): 224–228, https://doi.org/10.1038/ng0393-224.
  35. Davidson B.L., Allen E.D., Kozarsky K.F., Wilson J.M., Roessler B.J. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993; 3(3): 219–223, https://doi.org/10.1038/ng0393-219.
  36. Hukkanen V. Herpesvirus vectors in gene therapy. Open Virol J 2010; 4(3): 94–95, https://doi.org/10.2174/1874357901004030094.
  37. Bienkowska-Szewczyk K., Szewczyk B. Expression of genes coding for viral glycoproteins in heterologous systems. Acta Biochim Pol 1999; 46(2): 325–339.
  38. Burton E.A., Fink D.J., Glorioso J.C. Gene delivery using herpes simplex virus vectors. DNA Cell Biol 2002; 21(12): 915–936, https://doi.org/10.1089/104454902762053864.
  39. Fink D.J., Glorioso J.C. Herpes simplex viral vectors in gene therapy. In: Encyclopedia of life sciences. Wiley-Blackwell; 2007, https://doi.org/10.1002/9780470015902.a0005739.pub2.
  40. Sena-Esteves M., Saeki Y., Fraefel C., Breakefield X.O. HSV-1 amplicon vectors — simplicity and versatility. Mol Ther 2000; 2(1): 9–15, https://doi.org/10.1006/mthe.2000.0096.
  41. Laquerre S., Argnani R., Anderson D.B., Zucchini S., Manservigi R., Glorioso J.C. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 1998; 72(7): 6119–6130.
  42. Sandvik T., Tryland M., Hansen H., Mehl R., Moens U., Olsvik O., Traavik T. Naturally occurring orthopoxviruses: potential for recombination with vaccine vectors. J Clin Microbiol 1998; 36(9): 2542–2547.
  43. Zeh H.J., Bartlett D.L. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther 2002; 9(12): 1001–1012, https://doi.org/10.1038/sj.cgt.7700549.
  44. Davidson B.L., Breakefield X.O. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003; 4(5): 353–364, https://doi.org/10.1038/nrn1104.
  45. Somia N., Verma I.M. Gene therapy: trials and tribulations. Nat Rev Genet 2000; 1(2): 91–99, https://doi.org/10.1038/35038533.
  46. Berns K.I. Parvoviridae. The viruses and their replication. In: Virology. Fields B.N., Knipe D.M., Howley P.M. (editors). 3rd ed. Lippincott Williams and Wilkins, Philadelphia; 1996; p. 2173–2197.
  47. Rutledge E.A., Halbert C.L., Russell D.W. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72(1): 309–319.
  48. Xiao W., Chirmule N., Berta S.C., McCullough B., Gao G., Wilson J.M. Gene therapy vectors based on adenoassociated virus type 1. J Virol 1999; 73(5): 3994–4003.
  49. Gao G.P., Alvira M.R., Wang L., Calcedo R., Johnston J., Wilson J.M. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99(18): 11854–11859, https://doi.org/10.1073/pnas.182412299.
  50. Zhou X., Muzyczka N. In vitro packaging of adeno-associated virus DNA. J Virol 1998; 72: 3241–3247.
  51. Zolotukhin S., Byrne B.J., Mason E., Zolotukhin I., Potter M., Chesnut K., Summerford C., Samulski R.J., Muzyczka N. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999; 6(6): 973–985, https://doi.org/10.1038/sj.gt.3300938.
  52. Clark K.R., Liu X., McGrath J.P., Johnson P.R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10(6): 1031–1039, https://doi.org/10.1089/10430349950018427.
  53. Young S.M., Samulski R.J. Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat. Proc Natl Acad Sci USA 2001; 98(24): 13525–13530, https://doi.org/10.1073/pnas.241508998.
  54. Douar A.M., Poulard K., Stockholm D., Danos O. Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75(4): 1824–1833, https://doi.org/10.1128/jvi.75.4.1824-1833.2001.
  55. Sun J.Y., Anand-Jawa V., Chatterjee S., Wong K.K. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 2003; 10(11): 964–976, https://doi.org/10.1038/sj.gt.3302039.
  56. Grimm D. Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 2002; 28(2): 146–157, https://doi.org/10.1016/s1046-2023(02)00219-0.
  57. Büning H., Ried M.U., Perabo L., Gerner F.M., Huttner N.A., Enssle J., Hallek M. Receptor targeting of adeno-associated virus vectors. Gene Ther 2003; 10(14): 1142–1151, https://doi.org/10.1038/sj.gt.3301976.
  58. Balagúe C., Kalla M., Zhang W.W. Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 1997; 71(4): 3299–3306.
  59. Russell D.W., Kay M.A. Adeno-associated virus vectors and hemalology. Blood 1999; 94(3): 864–874.
  60. Tsai T.H., Chen S.L., Xiao X., Liu D.W., Tsao Y.P. Gene therapy for treatment of cerebral ischemia using defective recombinant adeno-associated virus vectors. Methods 2002; 28(2): 253–258, https://doi.org/10.1016/s1046-2023(02)00230-x.
  61. Young S.M., McCarty D.M., Degtyareva N., Samulski R.J. Roles of adeno-associated virus Rep protein and human chromosome 19 in site-specific recombination. J Virol 2000; 74(9): 3953–3966, https://doi.org/10.1128/jvi.74.9.3953-3966.2000.
  62. Hildinger M., Auricchio A., Gao G., Wang L., Chirmule N., Wilson J.M. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001; 75(13): 6199–6203, https://doi.org/10.1128/jvi.75.13.6199-6203.2001.
  63. Chao H., Liu Y., Rabinowitz J., Li C., Samulski R.J., Walsh C.E. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000; 2(6): 619–623, https://doi.org/10.1006/mthe.2000.0219.
  64. Snyder R.O. Adeno-associated virus-mediated gene delivery. J Gene Med 1999; 1(3): 166–175, https://doi.org/10.1002/(sici)1521-2254(199905/06...>3.0.co;2-z.
  65. Wu P., Xiao W., Conlon T., Hughes J., Agbandje-McKenna M., Ferkol T., Flotte T., Muzyczka N. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000; 74(18): 8635–8647, https://doi.org/10.1128/jvi.74.18.8635-8647.2000.
  66. Xie Q., Bu W., Bhatia S., Hare J., Somasundaram T., Azzi A., Chapman M.S. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99(16): 10405–10410, https://doi.org/10.1073/pnas.162250899.
  67. Xie Q., Somasundaram T., Bhatia S., Bu W., Chapman M.S. Structure determination of adeno-associated virus 2: three complete virus particles per asymmetric unit. Acta Crystallogr D Biol Crystallogr 2003; 59(6): 959–970, https://doi.org/10.1107/s0907444903005675.
  68. Doria M., Ferrara A., Auricchio A. AAV2/8 vectors purified from culture medium with a simple and rapid protocol transduce murine liver, muscle, and retina efficiently. Hum Gene Ther Method 2013; 24(6): 392–398, https://doi.org/10.1089/hgtb.2013.155.
  69. Mietzsch M., Grasse S., Zurawski C., Weger S., Bennett A., Agbandje-McKenna M., Muzyczka N., Zolotukhin S., Heilbronn R. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1–12 vectors for gene therapy. Hum Gene Ther 2014; 25(3): 212–222, https://doi.org/10.1089/hum.2013.184.
  70. Grieger J.C., Samulski R.J. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 2012; 507: 229–254, https://doi.org/10.1016/b978-0-12-386509-0.00012-0.
  71. Jooss K., Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 2003; 10(11): 955–963, https://doi.org/10.1038/sj.gt.3302037.
  72. Nair H.P., Young L.J. Application of adeno-associated viral vectors in behavioral research. Methods 2002; 28(2): 195–202, https://doi.org/10.1016/s1046-2023(02)00223-2.
  73. Ponnazhagan S., Mahendra G., Kumar S., Thompson J.A., Castillas M. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 2002; 76(24): 12900–12907, https://doi.org/10.1128/jvi.76.24.12900-12907.2002.
  74. Peel A.L., Zolotukhin S., Schrimsher G.W., Muzyczka N., Reier P.J. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther 1997; 4(1): 16–24, https://doi.org/10.1038/sj.gt.3300358.
  75. Groskreutz D., Schenborn E.T. Reporter systems. In: Recombinant protein protocols. Methods in molecular biology. Springer Nature; 1997; p. 11–30, https://doi.org/10.1385/0-89603-481-x:11.
  76. El-Andaloussi N., Endele M., Leuchs B., Bonifati S., Kleinschmidt J., Rommelaere J., Marchini A. Novel adenovirus-based helper system to support production of recombinant parvovirus. Cancer Gene Ther 2010; 18(4): 240–249, https://doi.org/10.1038/cgt.2010.73.
  77. Rabinowitz J.E., Rolling F., Li C., Conrath H., Xiao W., Xiao X., Samulski R.J. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76(2): 791–801, https://doi.org/10.1128/jvi.76.2.791-801.2002.
  78. Dubielzig R., King J.A., Weger S., Kern A., Kleinschmidt J.A. Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes. J Virol 1999; 73: 8989–8998.
  79. Wistuba A., Kern A., Weger S., Grimm D., Kleinschmidt J.A. Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol 1997; 71(2): 1341–1352.
  80. Holehonnur R., Luong J.A., Chaturvedi D., Ho A., Lella S.K., Hosek M.P., Ploski J.E. Adeno-associated viral serotypes produce differing titers and differentially transduce neurons within the rat basal and lateral amygdala. BMC Neurosci 2014; 15(1): 28, https://doi.org/10.1186/1471-2202-15-28.
  81. Nicolas A., Jolinon N., Alazard-Dany N., Barateau V., Epstein A.L., Greco A., Büning H., Salvetti A. Factors influencing helper-independent adeno-associated virus replication. Virology 2012; 432(1): 1–9, https://doi.org/10.1016/j.virol.2012.05.027.
  82. Rothermel M., Brunert D., Zabawa C., Díaz-Quesada M., Wachowiak M. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013; 33(38): 15195–15206, https://doi.org/10.1523/jneurosci.1618-13.2013.
  83. Grimm D., Kern A., Ritter K., Kleinschmedt J.A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998; 9(18): 2745–2760, https://doi.org/10.1089/hum.1998.9.18-2745.
  84. Kotin R.M. Large-scale recombinant adeno-associated virus production. Hum Mol Genet 2011; 20(R1): R2–R6, https://doi.org/10.1093/hmg/ddr141.
  85. Khan I.F., Hirata R.K., Russell D.W. AAV-mediated gene targeting methods for human cells. Nat Protoc 2011; 6(4): 482–501, https://doi.org/10.1038/nprot.2011.301.
  86. Dong B., Moore A.R., Dai J., Roberts S., Chu K., Kapranov P., Moss B., Xiao W. A concept of eliminating nonhomologous recombination for scalable and safe AAV vector generation for human gene therapy. Nucleic Acids Res 2013; 41(13): 6609–6617, https://doi.org/10.1093/nar/gkt404.
  87. Chiorini J.A., Afione S., Kotin R.M. Adeno-associated virus (AAV) type 5 Rep protein cleaves a unique terminal resolution site compared with other AAV serotypes. J Virol 1999; 73(5): 4293–4298.
  88. Kay M.A., Manno C.S., Ragni M.V., Larson P.J., Couto L.B., McClelland A., Glader B., Chew A.J., Tai S.J., Herzog R.W., Arruda V., Johnson F., Scallan C., Skarsgard E., Flake A.W., High K.A. Evidence for gene transfer and expression of factor IX inhaemophilia B patients treated with an AAV vector. Nat Genet 2000; 24(3): 257–261, https://doi.org/10.1038/73464.
  89. Grimm D. Adeno-associated virus (AAV) serotypes as vectors for human gene therapy. In: Research advances in virology. Vol. 1. Samal S.K., Liebler-Tenorio E., Delsert C., Paton D. (editors). India: Global Research Network; 2000; p. 91–114.
  90. Grimm D., Kay M.A., Kleinschmidt J.A. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7(6): 839–850, https://doi.org/10.1016/s1525-0016(03)00095-9.
  91. Synder R.O., Xiao X., Samulski R.J. Production of recombinant adeno-associated viral vectors. In: Current protocols in human genetics. Dracopoli N. (editor). New York: John Wiley; 1996; Chpt. 12.1; p. 1–20.
  92. Xu Z., Shi C., Qian Q. Scalable manufacturing methodologies for improving adeno-associated virus-based pharmaprojects. Chinese Science Bulletin 2014; 59(16): 1845–1855, https://doi.org/10.1007/s11434-014-0197-6.
  93. Wright J. Product-related impurities in clinical-grade recombinant AAV vectors: characterization and risk assessment. Biomedicines 2014; 2(1): 80–97, https://doi.org/10.3390/biomedicines2010080.
  94. Lentz T.B., Gray S.J., Samulski R.J. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012; 48(2): 179–188, https://doi.org/10.1016/j.nbd.2011.09.014.
  95. Kamimura K., Suda T., Zhang G., Liu D. Advances in gene delivery systems. Pharmaceut Med 2011; 25(5): 293–306, https://doi.org/10.1007/bf03256872.
  96. Auricchio A. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10(26): 3075–3081, https://doi.org/10.1093/hmg/10.26.3075.
  97. Snyder R.O., Im D.S., Muzyczka N. Evidence for covalent attachment of the adeno-associated virus (AAV) rep protein to the ends of the AAV genome. J Virol 1990; 64(12): 6204–6213.
  98. Paterna J.-C., Büeler H. Recombinant adeno-associated virus vector design and gene expression in the mammalian brain. Methods 2002; 28(2): 208–218, https://doi.org/10.1016/s1046-2023(02)00225-6.
  99. Kaspar B.K. Retrograde viral delivery of igf-1 prolongs survival in a mouse ALS model. Science 2003; 301(5634): 839–842, https://doi.org/10.1126/science.1086137.
  100. Chatterjee S., Li W., Wong C.A., Fisher-Adams G., Lu D., Guha M., Macer J.A., Forman S.J., Wong K.K. Jr. Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vectors. Blood 1999; 93: 1882–1894.
  101. Hermonat P.L., Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81(20): 6466–6470, https://doi.org/10.1073/pnas.81.20.6466.
  102. Polinski N.K., Gombash S.E., Manfredsson F.P., Lipton J.W., Kemp C.J., Cole-Strauss A., Kanaan N.M., Steece-Collier K., Kuhn N.C., Wohlgenant S.L., Sortwell C.E. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging 2015; 36(2): 1110–1120, https://doi.org/10.1016/j.neurobiolaging.2014.07.047.
  103. Weger S., Wistuba A., Grimm D., Kleinschmidt J.A. Control of adeno-associated virus type 2 cap gene expression: relative influence of helper virus, terminal repeats, and Rep proteins. J Virol 1997; 71(11): 8437–8447.
  104. Tiesjema B., Adan R.A.H., Luijendijk M.C.M., Kalsbeek A., la Fleur S.E. Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior. J Neurosci 2007; 27(51): 14139–14146, https://doi.org/10.1523/jneurosci.3280-07.2007.
  105. Nakai H., Storm T.A., Kay M.A. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 2000; 74(20): 9451–9463, https://doi.org/10.1128/jvi.74.20.9451-9463.2000.
  106. Kearns W.G., Afione S.A., Fulmer S.B., Pang M.C., Erikson D., Egan M., Landrum M.J., Flotte T.R., Cutting G.R. Recombinant adeno-associated virus (AAVCFTR) vectors do not integrate in a site-specific fashion in an immortahzed epithelial cell line. Gene Ther 1996; 3(9): 748–775.
  107. Betley J.N., Sternson S.M. Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits. Hum Gene Ther 2011; 22(6): 669–677, https://doi.org/10.1089/hum.2010.204.
  108. Tan W., Janczewski W.A., Yang P., Shao X.M., Callaway E.M., Feldman J.L. Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci 2008; 11(5): 538–540, https://doi.org/10.1038/nn.2104.
  109. Tian L., Hires S.A., Mao T., Huber D., Chiappe M.E., Chalasani S.H., Petreanu L., Akerboom J., McKinney S.A., Schreiter E.R., Bargmann C.I., Jayaraman V., Svoboda K., Looger L.L. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 2009; 6(12): 875–881, https://doi.org/10.1038/nmeth.1398.
  110. Hasan M.T., Friedrich R.W., Euler T., Larkum M.E., Giese G., Both M., Duebel J., Waters J., Bujard H., Griesbeck O., Tsien R.Y., Nagai T., Miyawaki A., Denk W. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2004; 2(6): e163, https://doi.org/10.1371/journal.pbio.0020163.
  111. Kravitz A.V., Freeze B.S., Parker P.R., Kay K., Thwin M.T., Deisseroth K., Kreitzer A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010; 466(7306): 622–626, https://doi.org/10.1038/nature09159.
  112. Hewett J., Gonzalez-Agosti C., Slater D., Ziefer P., Li S., Bergeron D., Jacoby D.J., Ozelius L.J., Ramesh V., Breakefield X.O. Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum Mol Genet 2000; 9(9): 1403–1413, https://doi.org/10.1093/hmg/9.9.1403.
  113. Bragg D.C., Wilbur J.D., Breakefield X.O. Expression of mutant and wild-type torsinA in human glioma cells by HSV amplicon vector-mediated gene transfer. In: Proc. 32nd Annual Meeting Society for Neuroscience. Orlando, Florida, USA; 2002.
  114. Hioki H., Kameda H., Nakamura H., Okunomiya T., Ohira K., Nakamura K., Kuroda M., Furuta T., Kaneko T. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 2007; 14(11): 872–882, https://doi.org/10.1038/sj.gt.3302924.
  115. Nathanson J.L., Yanagawa Y., Obata K., Callaway E.M. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 2009; 161(2): 441–450, https://doi.org/10.1016/j.neuroscience.2009.03.032.
  116. Van Hooijdonk L.W., Ichwan M., Dijkmans T.F., Schouten T.G., de Backer M.W., Adan R.A., Verbeek F.J., Vreugdenhil E., Fitzsimons C.P. Lentivirus-mediated transgene delivery to the hippocampus reveals sub-field specific differences in expression. BMC Neurosci 2009; 10(1): 2, https://doi.org/10.1186/1471-2202-10-2.
  117. Yaguchi M., Ohashi Y., Tsubota T., Sato A., Koyano K.W., Wang N., Miyashita Y. Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer. Hum Gene Ther Methods 2013; 24(6): 333–344, https://doi.org/10.1089/hgtb.2012.238.
  118. Dittgen T., Nimmerjahn A., Komai S., Licznerski P., Waters J., Margrie T.W., Helmchen F., Denk W., Brecht M., Osten P. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 2004; 101(52): 18206–18211, https://doi.org/10.1073/pnas.0407976101.
  119. Seeger-Armbruster S., Bosch-Bouju C., Little S.T.C., Smither R.A., Hughes S.M., Hyland B.I., Parr-Brownlie L.C. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced parkinsonian rats. J Neurosci 2015; 35(3): 1211–1216, https://doi.org/10.1523/jneurosci.3277-14.2015.
  120. Figueiredo M., Lane S., Stout R.F., Liu B., Parpura V., Teschemacher A.G., Kasparov S. Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 2014; 56(3): 208–214, https://doi.org/10.1016/j.ceca.2014.07.007.

Еpifanova E.A., Borisova Е.V., Salina V.A., Babaev А.А. Viral Vectors for Delivering Gene Material into Cells and Their Application in Neurobiology (Review). Sovremennye tehnologii v medicine 2017; 9(1): 162, https://doi.org/10.17691/stm2017.9.1.21


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank