Сегодня: 27.12.2024
RU / EN
Последнее обновление: 30.10.2024
Технологии «интерфейс мозг–компьютер» и нейробиоуправление: современное состояние, проблемы и возможности клинического применения (обзор)

Технологии «интерфейс мозг–компьютер» и нейробиоуправление: современное состояние, проблемы и возможности клинического применения (обзор)

А.И. Федотчев, С.Б. Парин, С.А. Полевая, С.Д. Великова
Ключевые слова: биоэлектрическое управление; интерфейс мозг–компьютер; нейробиоуправление; электроэнцефалограмма; ЭЭГ.
2017, том 9, номер 1, стр. 175.

Полный текст статьи

html pdf
2717
4158

Технологии «интерфейс мозг–компьютер» и нейробиоуправление являются уникальными методами модуляции активности мозга на основе оперантного облучения. С момента возникновения в 60-х гг. XX в. эти технологии стали лечебным инструментом для множества психических и неврологических расстройств. Однако до сих пор их эффективность остается предметом споров. В нашем обзоре рассмотрены история возникновения, особенности и современное состояние этих технологий. Основное внимание уделено анализу возможностей и перспектив использования данных технологий в клинической медицине для мобилизации механизмов пластичности нейронных сетей мозга. Представлены результаты собственных исследований в этом направлении. Показано, что будущее технологий «интерфейс мозг–компьютер» и нейробиоуправления зависит от многопрофильного сотрудничества неврологов, нейробиологов, инженеров и математиков. Эффективное объединение различных областей науки позволит разработать новые терапевтические режимы для восстановления и улучшения нервных, познавательных и поведенческих функций.

  1. Каплан А.Я., Кочетова А.Г., Шишкин С.Л., Ба­сюл И.А., Ганин И.П., Васильев А.Н., Либуркина С.П. Экспериментально-теоретические основания и практи­ческие реализации технологии «интерфейс мозг-ком­пьютер». Бюллетень сибирской медицины 2013; 12 (2): 21–29.
  2. Arns M., Heinrich H., Ros T., Rothenberger A., Strehl U. Editorial: neurofeedback in ADHD. Front Hum Neurosci 2015; 9: 602, https://doi.org/10.3389/fnhum.2015.00602.
  3. Frederick J.A. Psychophysics of EEG alpha state discrimination. Conscious Cogn 2012; 21(3): 1345–1354, https://doi.org/10.1016/j.concog.2012.06.009.
  4. Choi K. Electroencephalography (EEG)-based neurofeedback training for brain–computer interface (BCI). Exp Brain Res 2013; 231(3): 351–365, https://doi.org/10.1007/s00221-013-3699-6.
  5. Huster R.J., Mokom Z.N., Enriquez-Geppert S., Herrmann C.S. Brain–computer interfaces for EEG neurofeedback: peculiarities and solutions. Int J Psychophysiol 2014; 91(1): 36–45, https://doi.org/10.1016/j.ijpsycho.2013.08.011.
  6. Wood G., Kober S.E., Witte M., Neuper C. On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Front Syst Neurosci 2014; 8: 171, https://doi.org/10.3389/fnsys.2014.00171.
  7. Johnston S.J., Boehm S.G., Healy D., Goebel R., Linden D.E.J. Neurofeedback: a promising tool for the self-regulation of emotion networks. NeuroImage 2010; 49(1): 1066–1072, https://doi.org/10.1016/j.neuroimage.2009.07.056.
  8. Lofthouse N., Arnold L.E., Hurt E. Current status of neurofeedback for attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 2012; 14(5): 536–542, https://doi.org/10.1007/s11920-012-0301-z.
  9. Nicolas-Alonso L.F., Gomez-Gil J. Brain computer interfaces, a review. Sensors 2012; 12(12): 1211–1279, https://doi.org/10.3390/s120201211.
  10. Миняева Н.Р. Неинвазивные технологии в системах интерфейс мозг-компьютер. Валеология 2012; 4: 29–31.
  11. Arns M., Heinrich H., Strehl U. Evaluation of neurofeedback in ADHD: the long and winding road. Biol Psychol 2014; 95: 108–115, https://doi.org/10.1016/j.biopsycho.2013.11.013.
  12. Gevensleben H., Moll G.H., Rothenberger A., Heinrich H. Neurofeedback in attention-deficit/hyperactivity disorder — different models, different ways of application. Front Hum Neurosci 2014; 8: 846, https://doi.org/10.3389/fnhum.2014.00846.
  13. Holtmann M., Sonuga-Barke E., Cortese S., Brandeis D. Neurofeedback for ADHD: a review of current evidence. Child Adolesc Psychiatr Clin N Am 2014; 23(4): 789–806, https://doi.org/10.1016/j.chc.2014.05.006.
  14. Hurt E., Arnold L.E., Lofthouse N. Quantitative EEG neurofeedback for the treatment of pediatric attention-deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy. Child Adolesc Psychiatr Clin N Am 2014; 23(3): 465–486, https://doi.org/10.1016/j.chc.2014.02.001.
  15. Linden D.E. Neurofeedback and networks of depression. Dialogues Clin Neurosci 2014; 16(1): 103–112.
  16. Micoulaud-Franchi J.A., Geoffroy P.A., Fond G., Lopez R., Bioulac S., Philip P. EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front Hum Neurosci 2014; 8: 906, https://doi.org/10.3389/fnhum.2014.00906.
  17. Strehl U. What learning theories can teach us in designing neurofeedback treatments. Front Hum Neurosci 2014; 8: 894, https://doi.org/10.3389/fnhum.2014.00894.
  18. Wander J.D., Rao R.P. Brain–computer interfaces: a powerful tool for scientific inquiry. Curr Opin Neurobiol 2014; 25: 70–75, https://doi.org/10.1016/j.conb.2013.11.013.
  19. Шурхай В.А., Александрова Е.В., Потапов А.А., Го­ряйнов С.А. Современное состояние проблемы интерфейс мозг–компьютер. Вопросы нейрохирургии им. Н.Н. Бур­денко 2015; 79(1): 97–104.
  20. Huggins J.E., Moinuddin A.A., Chiodo A.E., Wren P.A. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch Phys Med Rehabil 2015; 96(3): S38–S45.e5, https://doi.org/10.1016/j.apmr.2014.05.028.
  21. Peters B., Bieker G., Heckman S.M., Huggins J.E., Wolf C., Zeitlin D., Fried-Oken M. Brain-computer interface users speak up: the Virtual Users’ Forum at the 2013 International Brain-Computer Interface Meeting. Arch Phys Med Rehabil 2015; 96(3 Suppl): S33–S37, https://doi.org/10.1016/j.apmr.2014.03.037.
  22. Jensen M.P., Sherlin L.H., Askew R.L., Fregni F., Witkop G., Gianas A., Howe J.D., Hakimian S. Effects of non-pharmacological pain treatments on brain states. Clin Neurophysiol 2013; 124(10): 2016–2024, https://doi.org/10.1016/j.clinph.2013.04.009.
  23. Larsen S., Sherlin L. Neurofeedback: an emerging technology for treating central nervous system dysregulation. Psychiatr Clin North Am 2013; 36(1): 163–168, https://doi.org/10.1016/j.psc.2013.01.005.
  24. Meisel V., Servera M., Garcia-Banda G., Cardo E., Moreno I. Neurofeedback and standard pharmacological intervention in ADHD: a randomized controlled trial with six-month follow-up. Biol Psychol 2013; 94(1): 12–21, https://doi.org/10.1016/j.biopsycho.2013.04.015.
  25. Holtmann M., Pniewski B., Wachtlin D., Wörz S., Strehl U. Neurofeedback in children with attention-deficit/hyperactivity disorder (ADHD) — a controlled multicenter study of a non-pharmacological treatment approach. BMC Pediatr 2014; 14(1): 202, https://doi.org/10.1186/1471-2431-14-202.
  26. Johnson M.R. Fear of stimulant therapy for children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2015; 25(2): 182, https://doi.org/10.1089/cap.2014.0117.
  27. Haller S., Kopel R., Jhooti P., Haas T., Scharnowski F., Lovblad K.O., Scheffler K., Van De Ville D. Dynamic reconfiguration of human brain functional networks through neurofeedback. Neuroimage 2013; 81: 243–252, https://doi.org/10.1016/j.neuroimage.2013.05.019.
  28. Burns A., Adeli H., Buford J.A. Brain–computer interface after nervous system injury. Neuroscientist 2014; 20(6): 639–651, https://doi.org/10.1177/1073858414549015.
  29. Bamdad M., Zarshenas H., Auais M.A. Application of BCI systems in neurorehabilitation: a scoping review. Disabil Rehabil Assist Technol 2015; 10(5): 355–364, https://doi.org/10.3109/17483107.2014.961569.
  30. Bowsher K., Civillico E.F., Coburn J., Collinger J., Contreras-Vidal J.L., Denison T., Donoghue J., French J., Getzoff N., Hochberg L.R., Hoffmann M., Judy J., Kleitman N., Knaack G., Krauthamer V., Ludwig K., Moynahan M., Pancrazio J.J., Peckham P.H., Pena C., Pinto V., Ryan T., Saha D., Scharen H., Shermer S., Skodacek K., Takmakov P., Tyler D., Vasudevan S., Wachrathit K., Weber D., Welle C.G., Ye M. Brain–computer interface devices for patients with paralysis and amputation: a meeting report. J Neural Eng 2016; 13(2): 023001, https://doi.org/10.1088/1741-2560/13/2/023001.
  31. Daly J.J., Huggins J.E. Brain–computer interface: current and emerging rehabilitation applications. Arch Phys Med Rehabil 2015; 96(3): S1–S7, https://doi.org/10.1016/j.apmr.2015.01.007.
  32. Vidal J.J. Toward direct brain-computer communication. Annu Rev Biophys Bioeng 1973; 2(1): 157–180, https://doi.org/10.1146/annurev.bb.02.060173.001105.
  33. Гурфинкель В.С., Малкин В.Б., Цетлин М.Л., Шней­дер А.Ю. Биоэлектрическое управление. М: Наука; 1972; 244 с.
  34. Бехтерева Н.П., Усов В.В. Методика прерывистой фото­стимуляции в ритме собственных потенциалов мозга при регистрации ЭЭГ. Физиологический журнал СССР им. И.М. Сеченова 1960; 46(1): 108–111.
  35. Kumano H., Horie H., Shidara T., Kuboki T., Suematsu H., Yasushi M. Treatment of a depressive disorder patient with EEG-driven photic stimulation. Biofeedback Self Regul 1996; 21(4): 323–334, https://doi.org/10.1007/bf02214432.
  36. Kamei T., Toriumi Y., Kumano H., Fukada M., Matsumoto T. Use of photic feedback as an adjunct treatment in a case of miller fisher syndrome. Percept Mot Skills 2000; 90(1): 262–264, https://doi.org/10.2466/pms.90.1.262-264.
  37. Woertz M., Pfurtscheller G., Klimesch W. Alpha power dependent light stimulation: dynamics of event-related (de)synchronization in human electroencephalogram. Brain Res Cogn Brain Res 2004; 20(2): 256–260, https://doi.org/10.1016/j.cogbrainres.2004.03.014.
  38. Shih J.J., Krusienski D.J., Wolpaw J.R. Brain-computer interfaces in medicine. Mayo Clin Proc 2012; 87(3): 268–279, https://doi.org/10.1016/j.mayocp.2011.12.008.
  39. Yanagisawa T., Hirata M., Saitoh Y., Kishima H., Matsushita K., Goto T., Fukuma R., Yokoi H., Kamitani Y., Yoshimine T. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol 2011; 71(3): 353–361, https://doi.org/10.1002/ana.22613.
  40. Frolov A.A., Biryukova E.V., Bobrov P.D., Mokienko O.A., Platonov A.K., Pryanichnikov V.E., Chernikova L.A. Principles of neurorehabilitation based on the brain-computer interface and biologically adequate control of the exoskeleton. Hum Physiol 2013; 39(2): 196–208, https://doi.org/10.1134/s0362119713020035.
  41. Каплан А.Я. Гармония большого взрыва. Отечест­венные записки 2014; 2(59): 123–136.
  42. Левицкая О.С., Лебедев М.А. Интерфейс мозг–компьютер: будущее в настоящем. Вестник Российского государственного медицинского университета 2016; 2: 4–16.
  43. Hebert J.S., Olson J.L., Morhart M.J., Dawson M.R., Marasco P.D., Kuiken T.A., Chan K.M. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans Neural Syst Rehabil Eng 2014; 22(4): 765–773, https://doi.org/10.1109/tnsre.2013.2294907.
  44. Kwok R. Neuroprosthetics: once more, with feeling. Nature 2013; 497(7448): 176–178, https://doi.org/10.1038/497176a.
  45. Miranda R.A., Casebeer W.D., Hein A.M., Judy J.W., Krotkov E.P., Laabs T.L., Manzo J.E., Pankratz K.G., Pratt G.A., Sanchez J.C., Weber D.J., Wheeler T.L., Ling G.S. DARPA-funded efforts in the development of novel brain–computer interface technologies. J Neurosci Methods 2015; 244: 52–67, https://doi.org/10.1016/j.jneumeth.2014.07.019.
  46. Ganin I.P., Shishkin S.L., Kaplan A.Y. A P300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design. PLoS One 2013; 8(10): e77755, https://doi.org/10.1371/journal.pone.0077755.
  47. Mokienko O.A., Lyukmanov R.K., Chernikova L.A., Suponeva N.A., Piradov M.A., Frolov A.A. Brain–computer interface: the first experience of clinical use in Russia. Hum Physiol 2016; 42(1): 24–31, https://doi.org/10.1134/s0362119716010126.
  48. Фролов А.А., Мокиенко О.А., Люкманов Р.Х., Чер­ни­кова Л.А., Котов С.В., Турбина Л.Г., Бобров П.Д., Би­рю­­кова Е.В., Кондур А.А., Иванова Г.Е., Старицын А.Н., Буш­кова Ю.В., Джалагония И.З., Курганская М.Е., Пав­лова О.Г., Будилин С.Ю., Азиатская Г.А., Хижнико­ва А.Е., Чер­вяков А.В., Лукьянов А.Л., Надайрейшвили Г.Г. Пред­варительные результаты контролируемого исследования эффективности технологии ИМК-экзоскелет при пост­инсультном парезе руки. Вестник Российского госу­дарст­венного медицинского университета 2016; 2: 17–25.
  49. Frolov A.A., Husek D., Silchenko A.V., Tintera J., Rydlo J. The changes in the hemodynamic activity of the brain during motor imagery training with the use of brain-computer interface. Hum Physiol 2016; 42(1): 1–12, https://doi.org/10.1134/s0362119716010084.
  50. Шишкин С.Л., Козырский Б.Л., Трофимов А.Г., Нуж­дин Ю.О., Федорова А.А., Свирин Е.П., Величковский Б.М. Улучшение работы интерфейса глаз–мозг–компьютер при использовании частотных компонентов ЭЭГ. Вестник Российского государственного медицинского университета 2016; 2: 39–44.
  51. Bradberry T.J., Gentili R.J., Contreras-Vidal J.L. Fast attainment of computer cursor control with noninvasively acquired brain signals. J Neural Eng 2011; 8(3): 036010, https://doi.org/10.1088/1741-2560/8/3/036010.
  52. Kaplan A.Y. Neurophysiological foundations and practical realizations of the brain–machine interfaces in the technology in neurological rehabilitation. Hum Physiol 2016; 42(1): 103–110, https://doi.org/10.1134/s0362119716010102.
  53. Hammond D.C. What is neurofeedback: an update. J Neurother 2011; 15(4): 305–336, https://doi.org/10.1080/10874208.2011.623090.
  54. Kamiya J. The first communications about operant conditioning of the EEG. J Neurother 2011; 15(1): 65–73, https://doi.org/10.1080/10874208.2011.545764.
  55. Ghaziri J., Tucholka A., Larue V., Blanchette-Sylvestre M., Reyburn G., Gilbert G., Lévesque J., Beauregard M. Neurofeedback training induces changes in white and gray matter. Clin EEG Neurosci 2013; 44(4): 265–272, https://doi.org/10.1177/1550059413476031.
  56. Seitz A.R. Cognitive Neuroscience: Targeting neuroplasticity with neural decoding and biofeedback. Curr Biol 2013; 23(5): R210–R212, https://doi.org/10.1016/j.cub.2013.01.015.
  57. Асланян Е.В., Кирой В.Н., Столетний А.С., Лазу­ренко Д.М., Бахтин О.М., Миняева Н.Р., Кирой Р.И. Влияние индивидуальных особенностей на способность к произвольной регуляции человеком выраженности в ЭЭГ альфа- и бета-частот. Российский физиологический журнал им. И.М. Сеченова 2015; 101(5): 599–613.
  58. Kiroy V.N., Lazurenko D.M., Shepelev I.E., Minyaeva N.R., Aslanyan E.V., Bakhtin O.M., Shaposhnikov D.G., Vladimirskiy B.M. Changes in EEG spectral characteristics in the course of neurofeedback training. Hum Physiol 2015; 41(3): 269–279, https://doi.org/10.1134/s0362119715030081.
  59. Niv S. Clinical efficacy and potential mechanisms of neurofeedback. Pers Individ Dif 2013; 54(6): 676–686, https://doi.org/10.1016/j.paid.2012.11.037.
  60. Ros T., Baars J.B., Lanius R.A., Vuilleumier P. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci 2014; 8: 1008, https://doi.org/10.3389/fnhum.2014.01008.
  61. Arnold L.E., Lofthouse N., Hersch S., Pan X., Hurt E., Bates B., Kassouf K., Moone S., Grantier C. EEG neurofeedback for ADHD: double-blind sham-controlled randomized pilot feasibility trial. J Atten Disord 2012; 17(5): 410–419, https://doi.org/10.1177/1087054712446173.
  62. Gevensleben H., Kleemeyer M., Rothenberger L.G., Studer P., Flaig-Röhr A., Moll G.H., Rothenberger A., Heinrich H. Neurofeedback in ADHD: further pieces of the puzzle. Brain Topogr 2014; 27(1): 20–32, https://doi.org/10.1007/s10548-013-0285-y.
  63. Escolano C., Navarro-Gil M., Garcia-Campayo J., Congedo M., Minguez J. The effects of individual upper alpha neurofeedback in ADHD: an open-label pilot study. Appl Psychophysiol Biofeedback 2014; 39(3–4): 193–202, https://doi.org/10.1007/s10484-014-9257-6.
  64. Duric N.S., Aßmus J., Elgen I.B. Self-reported efficacy of neurofeedback treatment in a clinical randomized controlled study of ADHD children and adolescents. Neuropsychiatr Dis Treat 2014; 10: 1645–1645, https://doi.org/10.2147/ndt.s66466.
  65. Bink M., van Nieuwenhuizen C., Popma A., Bongers I.L., van Boxtel G.J.M. Neurocognitive effects of neurofeedback in adolescents with ADHD. J Clin Psychiatry 2014; 75(05): 535–542, https://doi.org/10.4088/jcp.13m08590.
  66. Cannon R.L., Pigott H.E., Surmeli T., Simkin D.R., Thatcher R.W., Van den Bergh W., Gluck G., Lubar J.F., Davis R., Foster D.S., Douglas J., Malcolm A.T., Bars D., Little K., Center W., Berman M., Russell H., Hammer B., Koberda J.L. The problem of patient heterogeneity and lack of proper training in a study of EEG neurofeedback in children. J Clin Psychiatry 2014; 75(3): 289–290, https://doi.org/10.4088/jcp.13lr08850.
  67. Lee Y.-S., Bae S.-H., Lee S.-H., Kim K.-Y. Neurofeedback training improves the dual-task performance ability in stroke patients. Tohoku J Exp Med 2015; 236(1): 81–88, https://doi.org/10.1620/tjem.236.81.
  68. Peskind E.R., Brody D., Cernak I., McKee A., Ruff R.L. Military- and sports-related mild traumatic brain injury. J Clin Psychiatry 2013; 74(8): e17, https://doi.org/10.4088/jcp.12011nr2c.
  69. Strehl U., Birkle S.M., Wörz S., Kotchoubey B. Sustained reduction of seizures in patients with intractable epilepsy after self-regulation training of slow cortical potentials — 10 years after. Front Hum Neurosci 2014; 8: 604, https://doi.org/10.3389/fnhum.2014.00604.
  70. Ross S.M. Neurofeedback. Holist Nurs Pract 2013; 27(4): 246–250, https://doi.org/10.1097/hnp.0b013e3182971b7c
  71. Unterrainer H.F., Lewis A.J., Gruzelier J.H. EEG-neurofeedback in psychodynamic treatment of substance dependence. Front Psychol 2013; 4: 692, https://doi.org/10.3389/fpsyg.2013.00692.
  72. Dehghani-Arani F., Rostami R., Nadali H. Neurofeedback training for opiate addiction: improvement of mental health and craving. Appl Psychophysiol Biofeedback 2013; 38(2): 133–141, https://doi.org/10.1007/s10484-013-9218-5.
  73. Peeters F., Oehlen M., Ronner J., van Os J., Lousberg R. Neurofeedback as a treatment for major depressive disorder — a pilot study. PLoS One 2014; 9(3): e91837, https://doi.org/10.1371/journal.pone.0091837.
  74. Pineda J.A., Juavinett A., Datko M. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses 2012; 79(6): 790–798, https://doi.org/10.1016/j.mehy.2012.08.031.
  75. Сорокина Н.Д., Селицкий Г.В. Головная боль на­пряжения и мигрень: эффективность биологической обратной связи в их терапии. Журнал неврологии и психиатрии им. C.C. Корсакова 2013; 113(4): 86–91.
  76. Bartholdy S., Musiat P., Campbell I.C., Schmidt U. The potential of neurofeedback in the treatment of eating disorders: a review of the literature. Eur Eat Disord Rev 2013; 21(6): 456–463, https://doi.org/10.1002/erv.2250.
  77. Jensen M.P., Day M.A., Miró J. Neuromodulatory treatments for chronic pain: efficacy and mechanisms. Nat Rev Neurol 2014; 10(3): 167–178, https://doi.org/10.1038/nrneurol.2014.12.
  78. Hassan M.A., Fraser M., Conway B.A., Allan D.B., Vuckovic A. The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: a pilot study. BMC Neurol 2015; 15(1), https://doi.org/10.1186/s12883-015-0445-7.
  79. Schoenberg P.L.A., David A.S. Biofeedback for psychiatric disorders: a systematic review. Appl Psychophysiol Biofeedback 2014; 39(2): 109–135, https://doi.org/10.1007/s10484-014-9246-9.
  80. Farkas A., Bluschke A., Roessner V., Beste C. Neurofeedback and its possible relevance for the treatment of Tourette syndrome. Neurosci Biobehav Rev 2015; 51: 87–99, https://doi.org/10.1016/j.neubiorev.2015.01.012.
  81. Graczyk M., Pąchalska M., Ziółkowski A., Mańko G., Łukaszewska B., Kochanowicz K., Mirski A., Kropotov I.D. Neurofeedback training for peak performance. Ann Agric Environ Med 2014; 21(4): 871–875, https://doi.org/10.5604/12321966.1129950.
  82. Ruiz S., Birbaumer N., Sitaram R. Editorial: learned brain self-regulation for emotional processing and attentional modulation: from theory to clinical applications. Front Behav Neurosci 2016; 10, https://doi.org/10.3389/fnbeh.2016.00062.
  83. Hayashibe M., Guiraud D., Pons J.L., Farina D. Editorial: biosignal processing and computational methods to enhance sensory motor neuroprosthetics. Front Neurosci 2015; 9: 434, https://doi.org/10.3389/fnins.2015.00434.
  84. Thibault R.T., Lifshitz M., Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 2016; 74: 247–261, https://doi.org/10.1016/j.cortex.2015.10.024.
  85. Hammond D.C. The need for individualization in neurofeedback: heterogeneity in QEEG patterns associated with diagnoses and symptoms. Appl Psychophysiol Biofeedback 2009; 35(1): 31–36, https://doi.org/10.1007/s10484-009-9106-1.
  86. Лазарева О.Ю., Базанова О.М. Влияние инструкций на эффективность тренинга произвольного повышения мощности в индивидуальном высокочастотном альфа-диапазоне ЭЭГ. Бюллетень сибирской медицины 2013; 12(2): 58–65.
  87. Sokhadze E.M., El-Baz A.S., Tasman A., Sears L.L., Wang Y., Lamina E.V., Casanova M.F. Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: an exploratory study. Appl Psychophysiol Biofeedback 2014; 39(3–4): 237–257, https://doi.org/10.1007/s10484-014-9264-7.
  88. Tang H.-Y., Vitiello M.V., Perlis M., Riegel B. Open-Loop neurofeedback audiovisual stimulation: a pilot study of its potential for sleep induction in older adults. Appl Psychophysiol Biofeedback 2015; 40(3): 183–188, https://doi.org/10.1007/s10484-015-9285-x.
  89. Fedotchev A.I. Efficacy of EEG biofeedback procedures in correcting stress-related functional disorders. Hum Physiol 2010; 36(1): 86–90, https://doi.org/10.1134/s0362119710010111.
  90. Gruzelier J.H. EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations. Neurosci Biobehav Rev 2014; 44: 159–182, https://doi.org/10.1016/j.neubiorev.2014.03.015.
  91. Friedrich E.V., Suttie N., Sivanathan A., Lim T., Louchart S., Pineda J.A. Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front Neuroeng 2014; 7: 21, https://doi.org/10.3389/fneng.2014.00021.
  92. Fedotchev A.I., Oh S.J., Semikin G.I. Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders. Sovremennye tehnologii v medicine 2014; 6(3): 60–63.
  93. Fedotchev A.I., Bondar A.T., Bakhchina A.V., Grigorieva V.N., Katayev A.A., Parin S.B., Radchenko G.S., Polevaya S.A. Transformation of patient’s EEG oscillators into music-like signals for correction of stress-induced functional states. Sovremennye tehnologii v medicine 2016; 8(1): 93–98, https://doi.org/10.17691/stm2016.8.1.12.
  94. Федотчев А.И. Анализ резонансных ЭЭГ-реакций при оценке эффективности сенсорных воздействий. Физиология человека 1997; 23(4): 117–123.
  95. Федотчев А.И., Бондарь А.Т., Акоев И.Г. Ритмическая структура ЭЭГ человека: современное состояние и тенденции исследований. Успехи физиологических наук 2000; 31(3): 39–53.
  96. Федотчев А.И., Бондарь А.Т., Матрусов С.Г., Семенов В.С., Соин А.Г. Использование сигналов обратной связи от эндогенных ритмов пациента для нелекарственной коррекции функциональных расстройств. Успехи физиологических наук 2006; 37(4): 82–93.
  97. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci 2014; 15(3): 170–180, https://doi.org/10.1038/nrn3666.
  98. Thoma M.V., La Marca R., Brönnimann R., Finkel L., Ehlert U., Nater U.M. The effect of music on the human stress response. PLoS One 2013; 8(8): e70156, https://doi.org/10.1371/journal.pone.0070156.
  99. Radstaak M., Geurts S.A.E., Brosschot J.F., Kompier M.A.J. Music and psychophysiological recovery from stress. Psychosom Med 2014; 76(7): 529–537, https://doi.org/10.1097/psy.0000000000000094.
  100. Rollnik J.D., Altenmüller E. Music in disorders of consciousness. Front Neurosci 2014; 8, https://doi.org/10.3389/fnins.2014.00190.
  101. Clark C.N., Downey L.E., Warren J.D. Brain disorders and the biological role of music. Soc Cogn Affect Neurosci 2014; 10(3): 444–452, https://doi.org/10.1093/scan/nsu079.
  102. Gray E. In practice: music: a therapy for all? Perspect Public Health 2013; 133(1): 14, https://doi.org/10.1177/1757913912468642.
  103. Höller Y., Thomschewski A., Schmid E.V., Höller P., Crone J.S., Trinka E. Individual brain-frequency responses to self-selected music. Int J Psychophysiol 2012; 86(3): 206–213, https://doi.org/10.1016/j.ijpsycho.2012.09.005.
  104. Park M., Hennig-Fast K., Bao Y., Carl P., Pöppel E., Welker L., Reiser M., Meindl T., Gutyrchik E. Personality traits modulate neural responses to emotions expressed in music. Brain Res 2013; 1523: 68–76, https://doi.org/10.1016/j.brainres.2013.05.042.
  105. Müller W., Haffelder G., Schlotmann A., Schaefers A.T.U., Teuchert-Noodt G. Amelioration of psychiatric symptoms through exposure to music individually adapted to brain rhythm disorders — a randomised clinical trial on the basis of fundamental research. Cogn Neuropsychiatry 2014; 19(5): 399–413, https://doi.org/10.1080/13546805.2013.879054.
  106. Федотчев А.И., Бондарь А.Т., Бахчина А.В., Па­рин С.Б., Полевая С.А., Радченко Г.С. Музыкально-акустические воздействия, управляемые биопотенциалами мозга, в коррекции неблагоприятных функциональных состояний. Успехи физиологических наук 2016; 47(1): 69–79.
  107. Fedotchev A.I., Kim E.V. Correction of functional disturbances during pregnancy by the method of adaptive EEG biofeedback training. Hum Physiol 2006; 32(6): 652–656, https://doi.org/10.1134/s0362119706060041.
  108. Федотчев А.И., Ким Е.В. Особенности лечебных сеансов биоуправления с обратной связью по электроэнцефалограмме при нормальном и отягощенном протекании беременности. Журнал высшей нервной деятельности им. И.П. Павлова 2009; 59(4): 421–428.
  109. Федотчев А.И. Стресс, его последствия для человека и современные нелекарственные подходы к их устранению. Успехи физиологических наук 2009; 40(1): 77–91.
  110. Fedotchev A.I., Zemlyanaya A.A., Polevaya S.A., Savchuk L.V. Attention deficit hyperactivity disorder and current possibilities of its treatment by the method of neurofeedback training. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2016; 116(5): 98, https://doi.org/10.17116/jnevro20161165198-101.

Fedotchev А.I., Parin S.B., Polevaya S.A., Velikova S.D. Brain-Computer Interface and Neurofeedback Technologies: Current State, Problems and Clinical Prospects (Review). Sovremennye tehnologii v medicine 2017; 9(1): 175, https://doi.org/10.17691/stm2017.9.1.22


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank