Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Эмбриогенез и регенерация межпозвонкового диска (обзор)

Эмбриогенез и регенерация межпозвонкового диска (обзор)

И.А. Степанов, Л.А. Бардонова, Е.Г. Белых, В.А. Бывальцев
Ключевые слова: дегенерация межпозвонкового диска; студенистое ядро; фиброзное кольцо; внеклеточный матрикс; аггрекан; модели дегенерации диска; эмбриогенез; внутриклеточные сигнальные пути.
2017, том 9, номер 3, стр. 151.

Полный текст статьи

html pdf
2694
1883

Показано, что дегенеративные процессы межпозвонкового диска представляют собой целый ряд молекулярных, клеточных, структурных и функциональных изменений, основным клиническим проявлением которых является болевой синдром. На этом основании традиционная терапия дегенерации межпозвонкового диска направлена на устранение боли и не учитывает истинных причин развития дегенеративных процессов, не исследует возможности дальнейшего восстановления структуры и биомеханической функции диска. Новый подход к изучению молекулярных и клеточных механизмов дегенерации межпозвонкового диска, рассмотрение патогенеза дегенеративных процессов диска с позиций его развития в онтогенезе позволяют открыть новые звенья патогенеза и предложить новые перспективные методы терапевтического воздействия.

Рассмотрены разработанные модели дегенерации межпозвонковых дисков, которые позволяют комплексно изучать морфогенез и связанные с ним внутриклеточные сигнальные пути, а также ранние постнатальные изменения в диске. Представлены современные стратегии биологической терапии дегенеративных процессов, которые направлены на активацию регенераторных потенциалов в диске и его самообновление. Одним из перспективных методов биологической терапии данного заболевания названо использование аутологичных культивированных in vitro клеток межпозвонковых дисков с последующей их имплантацией, что потенциально может восполнить дефицит клеток, а следовательно, и матрикса диска.

  1. Благодатский М.Д., Балашов Б.Б. О морфо­логи­ческих изменениях в тканях позвоночного канала при ко­решковом синдроме поясничного остеохондроза. Жур­нал невропатологии и психиатрии 1987; 4: 512–516.
  2. Благодатский М.Д., Солодун Ю.В. Об аутоиммунном компоненте воспалительных реакций при корешковых син­дро­мах поясничного остеохондроза. Журнал невро­патологии и психиатрии 1988; 4: 46–51.
  3. Бывальцев В.А., Панасенков С.Ю., Цыганов П.Ю., Белых Е.Г., Сороковиков В.А. Наноструктурный анализ поясничных межпозвонковых дисков на разных стадиях де­­ге­не­ративного процесса. Вопросы нейрохирургии им. Н.Н. Бур­денко 2013; 77(3): 36–41.
  4. An H.S., Masuda K., Inoue N. Intervertebral disc degeneration: biological and biomechanical factors. J Orthop Sci 2006; 11(5): 541–552, https://doi.org/10.1007/s00776-006-1055-4.
  5. Adams M.A., Roughley P.J. What is intervertebral disc degeneration, and what causes it? Spine 2006; 31(18): 2151–2161, https://doi.org/10.1097/01.brs.0000231761.73859.2c.
  6. Freemont A.J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology 2009; 48(1): 5–10, https://doi.org/10.1093/rheumatology/ken396.
  7. Urban J.P.G., Roberts S., Ralphs J.R. The nucleus of the interverterbal disc from development to degeneration. American Zoologist 2000; 40(1): 53–61, https://doi.org/10.1093/icb/40.1.53.
  8. Mirza S.K., Deyo R.A. Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine 2007; 32(7): 816–823, https://doi.org/10.1097/01.brs.0000259225.37454.38.
  9. Ghiselli G., Wang J.C., Bhatia N.N., Hsu W.K., Dawson E.G. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 2004; 86(7): 1497–1503, https://doi.org/10.2106/00004623-200407000-00020.
  10. Hanley E.N. Jr., Herkowitz H.N., Kirkpatrick J.S., Wang J.C., Chen M.N., Kang J.D. Debating the value of spine surgery. J Bone Joint Surg Am 2010; 92(5): 1293–1304.
  11. Miller J.A., Schmatz C., Schultz A.B. Lumbar disc degeneration: correlation with age, sex and spine level in 600 autopsy specimens. Spine 1988; 13(2): 173–178, https://doi.org/10.1097/00007632-198802000-00008.
  12. Boos N., Weissbach S., Rohrbach H., Weiler C., Spratt K.F., Nerlich A.G. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 2010; 27(23): 2631–2644, https://doi.org/10.1097/00007632-200212010-00002.
  13. Urban J.P., Smith S., Fairbank J.C. Nutrition of the intervertebral disc. Spine 2004; 29(23): 2700–2709, https://doi.org/10.1097/01.brs.0000146499.97948.52.
  14. Humzah M.D., Soames R.W. Human intervertebral disc: structure and function. Anat Rec 1988; 220(4): 337–356, https://doi.org/10.1002/ar.1092200402.
  15. Cassidy J.J., Hiltner A., Baer E. Hierarchical structure of the intervertebral disc. Connect Tissue Res 1989; 23(1): 75–88, https://doi.org/10.1557/proc-174-145.
  16. Marchand F., Ahmed A.M. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 1990; 15(5): 402–410, https://doi.org/10.1097/00007632-199005000-00011.
  17. Rajasekaran S., Babu J.N., Arun R., Armstrong B.R., Shetty A.P., Murugan S. ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 2004; 29(23): 2654–2667, https://doi.org/10.1097/01.brs.0000148014.15210.64.
  18. Johannessen W., Cloyd J.M., O’Connell G.D., Vresilovic E.J., Elliott D.M. Trans-endplate nucleotomy increases deformation and creep response in axial loading. Ann Biomed Eng 2006; 34(4): 687–696, https://doi.org/10.1007/s10439-005-9070-8.
  19. O’Connell G.D., Guerin H.L., Elliott D.M. Theoretical and experimental evaluation of human annulus fibrosus degeneration. J Biomech Eng 2009; 131(11): 111007, https://doi.org/10.1115/1.3212104.
  20. Heuer F., Schmidt H., Wilke H.J. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J Biomech 2008; 41(9): 1953–1960, https://doi.org/10.1016/j.jbiomech.2008.03.023.
  21. Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 1997; 36(9): 1127–1139, https://doi.org/10.1016/s0028-3908(97)00125-1.
  22. Gonzales S.D. The effects of ATP and adenosine on the extracellular matrix biosynthesis via purinergic pathways. Dissertation. University of Miami; 2014.
  23. Wang C., Gonzales S., Levene H., Gu W., Huang C.Y. Energy metabolism of intervertebral disc under mechanical loading. J Orthop Res 2013; 31(11): 1733–1738, https://doi.org/10.1002/jor.22436.
  24. Roughley P.J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 2004; 29(23): 2691–2699, https://doi.org/10.1097/01.brs.0000146101.53784.b1.
  25. Vresilovic E.J., Johannessen W., Elliott D.M. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. J Biomech Eng 2006; 128(6): 823–829, https://doi.org/10.1115/1.2354210.
  26. Guerin H.L., Elliott D.M. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J Orthop Res 2007; 25(4): 508–516, https://doi.org/10.1002/jor.20324.
  27. Schmidt H., Kettler A., Heuer F., Simon U., Claes L., Wilke H.J. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine 2007; 32(7): 748–755, https://doi.org/10.1097/01.brs.0000259059.90430.c2.
  28. Nerlich A.G., Schaaf R., Wälchli B., Boos N. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J 2007; 16(4): 547–555, https://doi.org/10.1007/s00586-006-0213-x.
  29. Maroudas A., Stockwell R.A., Nachemson A., Urban J. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 1975; 120(Pt 1): 113–130.
  30. Bruehlmann S.B., Rattner J.B., Matyas J.R., Duncan N.A. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 2002; 201(2): 159–171, https://doi.org/10.1046/j.1469-7580.2002.00080.x.
  31. Antoniou J., Steffen T., Nelson F., Winterbottom N., Hollander A.P., Poole R.A., Aebi M., Alini M. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996; 98(4): 996–1003, https://doi.org/10.1172/jci118884.
  32. Roughley P.J., Melching L.I., Heathfield T.F., Pearce R.H., Mort J.S. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 2006; 15(Suppl 3): 326–332, https://doi.org/10.1007/s00586-006-0127-7.
  33. Boxberger J.I., Auerbach J.D., Sen S., Elliott D.M. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine 2008; 33(2): 146–154, https://doi.org/10.1097/brs.0b013e31816054f8.
  34. Nerurkar N.L., Mauck R.L., Elliott D.M. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus. Spine 2008; 33(25): 2691–2701, https://doi.org/10.1097/brs.0b013e31818e61f7.
  35. Adams M.A., McNally D.S., Dolan P. ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 1996; 78(6): 965–972.
  36. Acaroglu E.R., Iatridis J.C., Setton L.A., Foster R.J., Mow V.C., Weidenbaum M. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 1995; 20(24): 2690–2701, https://doi.org/10.1097/00007632-199512150-00010.
  37. O’Connell G.D., Vresilovic E.J., Elliott D.M. Comparison of animals used in disc research to human lumbar disc geometry. Spine 2007; 32(3): 328–333, https://doi.org/10.1097/01.brs.0000253961.40910.c1.
  38. Vernon-Roberts B. Disc pathology and disease states. In: The biology of the intervertebral disc. Ghosh P. (editor). CRC Press; 1988; p. 73–119.
  39. Videman T., Battié M.C., Gibbons L.E., Maravilla K., Manninen H., Kaprio J. Associations between back pain history and lumbar MRI findings. Spine 2003; 28(6): 582–588, https://doi.org/10.1097/01.brs.0000049905.44466.73.
  40. Stokes I.A., Iatridis J.C. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 2004; 29(23): 2724–2732, https://doi.org/10.1097/01.brs.0000146049.52152.da.
  41. Zhao C.Q., Wang L.M., Jiang L.S., Dai L.Y. The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 2007; 6(3): 247–261, https://doi.org/10.1016/j.arr.2007.08.001.
  42. Le Maitre C.L., Pockert A., Buttle D.J., Freemont A.J., Hoyland J.A. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 2007; 35(Pt 4): 652–655, https://doi.org/10.1042/bst0350652.
  43. Walsh A.J., Lotz J.C. Biological response of the intervertebral disc to dynamic loading. J Biomech 2004; 37(3): 329–337, https://doi.org/10.1016/s0021-9290(03)00290-2.
  44. Battie M.C., Videman T. Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 2006; 88(Suppl 2): 3–9, https://doi.org/10.2106/00004623-200604002-00002.
  45. Sambrook P.N., MacGregor A.J., Spector T.D. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 1999; 42(2): 366–372, https://doi.org/10.1002/1529-0131(199902)42:2366::aid-anr203.0.co;2-6.
  46. Alini M., Eisenstein S.M., Ito K., Little C., Kettler A.A., Masuda K., Melrose J., Ralphs J., Stokes I., Wilke H.J. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 2008; 17(1): 2–19, https://doi.org/10.1007/s00586-007-0414-y.
  47. Beckstein J.C., Sen S., Schaer T.P., Vresilovic E.J., Elliott D.M. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine 2008; 33(6): 166–177, https://doi.org/10.1097/brs.0b013e318166e001.
  48. Elliott D.M., Yerramalli C.S., Beckstein J.C., Boxberger J.I., Johannessen W., Vresilovic E.J. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 2008; 33(6): 588–596, https://doi.org/10.1097/brs.0b013e318166e0a2.
  49. Iatridis J.C., Mente P.L., Stokes I.A., Aronsson D.D., Alini M. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 1999; 24(10): 996–1002, https://doi.org/10.1097/00007632-199905150-00013.
  50. Kroeber M.W., Unglaub F., Wang H., Schmid C., Thomsen M., Nerlich A., Richter W. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 2002; 27(23): 2684–2690, https://doi.org/10.1097/00007632-200212010-00007.
  51. Hoogendoorn R.J., Wuisman P.I., Smit T.H., Everts V.E., Helder M.N. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine 2007; 32(17): 1816–1825, https://doi.org/10.1097/brs.0b013e31811ebac5.
  52. Gruber H.E., Norton H.J., Ingram J.A., Hanley E.N. Jr. The SOX9 transcription factor in the human disc: decreased immunolocalization with age and disc degeneration. Spine 2005; 30(6): 625–630, https://doi.org/10.1097/01.brs.0000155420.01444.c6.
  53. Hansen H.J. A pathologic-anatomical interpretation of disc degeneration in dogs. Acta Orthop Scand 1951; 20(4): 280–294, https://doi.org/10.3109/17453675108991175.
  54. Fleming A., Keynes R.J., Tannahill D. The role of the notochord in vertebral column formation. J Anat 2001; 199(Pt 1–2): 177–180, https://doi.org/10.1017/s0021878201008044.
  55. Stemple D.L. Structure and function of the notochord: an essential organ for chordate development. Development 2005; 132(11): 2503–2512, https://doi.org/10.1242/dev.01812.
  56. Choi K.S., Cohn M.J., Harfe B.D. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 2008; 237(12): 3953–3958, https://doi.org/10.1002/dvdy.21805.
  57. Peacock A. Observations on the postnatal development of the intervertebral disc in man. J Anat 1952; 86: 162–179.
  58. Walmsley R. The development and growth of the intervertebral disc. Edinb Med J 1953; 60(8): 341–364.
  59. Hunter C.J., Matyas J.R., Duncan N.A. Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 2004; 205(5): 357–362.
  60. Aszódi A., Chan D., Hunziker E., Bateman J.F., Fässler R. Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 1998; 143(5): 1399–1412, https://doi.org/10.1083/jcb.143.5.1399.
  61. Rufai A., Benjamin M., Ralphs J.R. The development of fibrocartilage in the rat intervertebral disc. Anat Embryol (Berl) 1995; 192(1): 53–62, https://doi.org/10.1007/bf00186991.
  62. Hayes A.J., Benjamin M., Ralphs J.R. Role of actin stress fibres in the development of the intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn 1999; 215(3): 179–189, https://doi.org/10.1002/(sici)1097-0177(199907)215:3179::aid-aja13.0.co;2-q.
  63. Pazzaglia U.E., Salisbury J.R., Byers P.D. Development and involution of the notochord in the human spine. J R Soc Med 1989; 82(7): 413–415.
  64. Placzek M. The role of the notochord and floor plate in inductive interactions. Curr Opin Genet Dev 1995; 5(4): 499–506, https://doi.org/10.1016/0959-437x(95)90055-l.
  65. Ehlen H.W., Buelens L.A., Vortkamp A. Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 2006; 78(3): 267–279, https://doi.org/10.1002/bdrc.20076.
  66. McMahon A.P., Ingham P.W., Tabin C.J. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 2003; 53: 1–114, https://doi.org/10.1016/s0070-2153(03)53002-2.
  67. Choi K.S., Harfe B.D. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc Natl Acad Sci USA 2011; 108(23): 9484–9489, https://doi.org/10.1073/pnas.1007566108.
  68. DiPaola C.P., Farmer J.C., Manova K., Niswander L.A. Molecular signaling in intervertebral disk development. J Orthop Res 2005; 23(5): 1112–1119, https://doi.org/10.1016/j.orthres.2005.03.008.
  69. Frost V., Grocott T., Eccles M.R., Chantry A. Self-regulated Pax gene expression and modulation by the TGFbeta superfamily. Crit Rev Biochem Mol Biol 2008; 43(6): 371–391, https://doi.org/10.1080/10409230802486208.
  70. Wallin J., Wilting J., Koseki H., Fritsch R., Christ B., Balling R. The role of Pax-1 in axial skeleton development. Development 1994; 120(5): 1109–1112.
  71. Smith C.A., Tuan R.S. Human PAX gene expression and development of the vertebral column. Clin Orthop Relat Res 1994; 302: 241–250.
  72. Peters H., Wilm B., Sakai N., Imai K., Maas R., Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development 1999; 126(23): 5399–5408.
  73. Fan C.M., Tessier-Lavigne M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 1994; 79(7): 1175–1186, https://doi.org/10.1016/0092-8674(94)90009-4.
  74. Furumoto T.A., Miura N., Akasaka T., Mizutani-Koseki Y., Sudo H., Fukuda K., Maekawa M., Yuasa S., Fu Y., Moriya H., Taniguchi M., Imai K., Dahl E., Balling R., Pavlova M., Gossler A., Koseki H. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev Biol 1999; 210(1): 15–29, https://doi.org/10.1006/dbio.1999.9261.
  75. Schepers G.E., Teasdale R.D., Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002; 3(2): 167–170, https://doi.org/10.1016/s1534-5807(02)00223-x.
  76. Wegner M. All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 2010; 42(3): 381–390, https://doi.org/10.1016/j.biocel.2009.07.006.
  77. Smits P., Lefebvre V. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 2003; 130(6): 1135–1148, https://doi.org/10.1242/dev.00331.
  78. Bi W., Deng J.M., Zhang Z., Behringer R.R., de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22(1): 85–89, https://doi.org/10.1038/8792.
  79. Barrionuevo F., Taketo M.M., Scherer G., Kispert A. Sox9 is required for notochord maintenance in mice. Dev Biol 2006; 295(1): 128–140, https://doi.org/10.1016/j.ydbio.2006.03.014.
  80. Millan F.A., Denhez F., Kondaiah P., Akhurst R.J. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development 1991; 111(1): 131–143.
  81. Pattison S.T., Melrose J., Ghosh P., Taylor T.K. Regulation of gelatinase-A (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by transforming growth factor-β1 and insulin like growth factor-I. Cell Biol Int 2001; 25(7): 679–689, https://doi.org/10.1006/cbir.2000.0718.
  82. Gruber H.E., Norton H.J., Hanley E.N. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine 2000; 25(17): 2153–2157, https://doi.org/10.1097/00007632-200009010-00002.
  83. Okuda S., Myoui A., Ariga K., Nakase T., Yonenobu K., Yoshikawa H. Mechanisms of age-related decline in insulin-like growth factor-I dependent proteoglycan synthesis in rat intervertebral disc cells. Spine 2001; 26(22): 2421–2426, https://doi.org/10.1097/00007632-200111150-00005.
  84. Takegami K., An H.S., Kumano F., Chiba K., Thonar E.J., Singh K., Masuda K. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 2005; 5(3): 231–238, https://doi.org/10.1016/j.spinee.2004.11.001.
  85. Wehling P., Schulitz K.P., Robbins P.D., Evans C.H., Reinecke J.A. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine 1997; 22(10): 1092–1097, https://doi.org/10.1097/00007632-199705150-00008.
  86. Reinecke J.A., Wehling P., Robbins P., Evans C.H., Sager M., Schulze-Allen G., Koch H. In vitro transfer of genes in spinal tissue. Z Orthop Ihre Grenzgeb 1997; 135(5): 412–416.
  87. Lattermann C., Oxner W.M., Xiao X., Li J., Gilbertson L.G., Robbins P.D., Kang J.D. The adenoassociated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits. Spine 2005; 30(5): 497–504, https://doi.org/10.1097/01.brs.0000154764.62072.44.
  88. Nishida K., Kang J.D., Gilbertson L.G., Moon S.H., Suh J.K., Vogt M.T., Robbins P.D., Evans C.H. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 1999; 24(23): 2419–2425.
  89. Somia N., Verma I.M. Gene therapy: trials and tribulations. Nat Rev Genet 2000; 1: 91–99.
  90. Moon S.H., Nishida K., Gilbertson L.G., Lee H.M., Kim H., Hall R.A., Robbins P.D., Kang J.D. Biologic response of human intervertebral disc cells to gene therapy cocktail. Spine 2008; 33(17): 1850–1855, https://doi.org/10.1097/brs.0b013e31817e1cd7.
  91. Mason J.M., Breitbart A.S., Barcia M., Porti D., Pergolizzi R.G., Grande D.A. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res 2000; 379(Suppl): S171–S178.
  92. Sakai D., Mochida J., Iwashina T., Hiyama A., Omi H., Imai M., Nakai T., Ando K., Hotta T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006; 27(3): 335–345, https://doi.org/10 .1016/j.biomaterials.2005.06.038.
  93. Kühlcke K., Fehse B., Schilz A., Loges S., Lindemann C., Ayuk F., Lehmann F., Stute N., Fauser A.A., Zander A.R., Eckert H.G. Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels. Mol Ther 2002; 5(4): 473–478, https://d oi.org/10.1006/mthe.2002.0566.
  94. Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 2008; 18(3): 213–219, https:// doi.org/10.1007/s10165-008-0048-x.
  95. Kramer J., Hegert C., Guan K., Wobus A.M., Müller P.K., Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 2000; 92(2): 193–205, https://doi. org/10.1016/s0925-4773(99)00339-1.
  96. Richardson S.M., Walker R.V., Parker S., Rhodes N.P., Hunt J.A., Freemont A.J., Hoyland J.A. Intervertebral disc cell mediated mesenchymal stem cell differentiation. Stem Cells 2006; 24(3): 707–716, https://doi.o rg/10.1634/st emcells.2005-0205.
  97. Anderson D.G., Risbud M.V., Shapiro I.M., Vaccaro A.R., Albert T.J. Cell-based therapy for disc repair. Spine J 2005; 5(6 Suppl): S297–S303, 2005, https://doi.o rg/10.1016/j.spinee.2005.02.019.
  98. Zhang Y.G., Guo X., Xu P., Kang L.L., Li J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 2005; 430: 219–226, https://doi.org/10.1097/01.blo.000014 6534.31120.cf.
  99. Li J., Ezzelarab M.B., Cooper D.K. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation 2012; 19(5): 273–285, https://doi.org/10. 1111/xen.12000.
  100. Jorgensen C. Mesenchymal stem cells immunosuppressive properties: is it specific to bone marrow derived cells? Stem Cell Res Ther 2010; 1(2): 15–16, https ://doi.org/10.1186/scrt15.
  101. Djouad F., Plence P., Bony C., Tropel P., Apparailly F., Sany J., Noël D., Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102(10): 3837–3844, https://doi.org/10.1182/blood -2003-04-1193.
  102. Lee J.P., Jeyakumar M., Gonzalez R., Takahashi H., Lee P.J., Baek R.C., Clark D., Rose H., Fu G., Clarke J., McKercher S., Meerloo J., Muller F.J., Park K.I., Butters T.D., Dwek R.A., Schwartz P., Tong G., Wenger D., Lipton S.A., Seyfried T.N., Platt F.M., Snyder E.Y. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 2007; 13(4): 439–447, https://doi.org/10.1038/n m1548.
  103. Crevensten G., Walsh A.J., Ananthakrishnan D., Page P., Wahba G.M., Lotz J.C., Berven S. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 2004; 32(3): 430–434, https://doi.org/10.1023/b:abme.0000017545.84833.7c .

Stepanov I.A., Bardonova L.А., Belykh Y.G., Byvaltsev V.А. Embryogenesis and Regeneration of the Intervertebral Disk (Review). Sovremennye tehnologii v medicine 2017; 9(3): 151, https://doi.org/10.17691/stm2017.9.3.19


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank