Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Патоморфоз магистральных сосудов конечностей  при экспериментальном атерогенном воспалении.  Роль адвентициально-интимальных взаимоотношений  (обзор)

Патоморфоз магистральных сосудов конечностей при экспериментальном атерогенном воспалении. Роль адвентициально-интимальных взаимоотношений (обзор)

А.К. Кириченко, Н.Н. Патлатая, А.Ф. Шаркова, А.А. Певнев, К.В. Конторев, О.В. Шаповалова, М.Е. Горбань, И.Н. Большаков
Ключевые слова: атерогенное воспаление; маркеры атерогенеза; сосудистая стенка; терапевтический ангиогенез; морфологическая реконструкция сосуда; генно-инженерные препараты; биодеградируемые полисахаридные конструкции; инженерия сосудистой адвентиции.
2017, том 9, номер 3, стр. 162.

Полный текст статьи

html pdf
2096
1968

Рассматриваются вопросы патологической деструкции сосудистой стенки при ранних признаках атерогенного воспаления магистральных артерий в состоянии гиперлипидемии с позиций современных технологий локальной реконструкции сосуда. Показана роль молекулярных маркеров в развитии и прогрессировании атерогенного воспаления в интимной оболочке и подинтимном пространстве. Акцент ставится на современные генно-инженерные и биополимерные технологии реконструкции стенки сосудов, на значение адвентициального и параадвентициального слоев артерий в развитии атерогенного воспаления, формирование эффекта терапевтического ангиогенеза при использовании современных методов биоинженерии адвентиции.

  1. European Stroke Organisation, Tendera M., Aboyans V., Bartelink M.L., Baumgartner I., Clément D., Collet J.P., Cremonesi A., De Carlo M., Erbel R., Fowkes F.G., Heras M., Kownator S., Minar E., Ostergren J., Poldermans D., Riambau V., Roffi M., Röther J., Sievert H., van Sambeek M., Zeller T.; ESC Committee for Practice Guidelines. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J 2011; 32(22): 2851–2906, https://doi.org/10.1093/eurheartj/ehr211.
  2. Olin J.W., Sealove B.A. Peripheral artery disease: current insight into the disease and its diagnosis and management. Mayo Clin Proc 2010; 85(7): 678–692, https://doi.org/10.4065/mcp.2010.0133.
  3. Writing Committee to Develop Clinical Data Standards for Peripheral Atherosclerotic Vascular Disease, Creager M.A., Belkin M., Bluth E.I., Casey D.E. Jr., Chaturvedi S., Dake M.D., Fleg J.L., Hirsch A.T., Jaff M.R., Kern J.A., Malenka D.J., Martin E.T., Mohler E.R. 3rd, Murphy T., Olin J.W., Regensteiner J.G., Rosenwasser R.H., Sheehan P., Stewart K.J., Treat-Jacobson D., Upchurch G.R. Jr., White C.J., Ziffer J.A., Hendel R.C., Bozkurt B., Fonarow G.C., Jacobs J.P., Peterson P.N., Roger V.L., Smith E.E., Tcheng J.E., Wang T., Weintraub W.S. 2012 ACCF/AHA/ACR/SCAI/SIR/STS/SVM/SVN/SVS key data elements and definitions for peripheral atherosclerotic vascular disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Peripheral Atherosclerotic Vascular Disease). Circulation 2012; 125(2): 395–467, https://doi.org/10.1161/cir.0b013e31823299a1.
  4. Fowkes F.G., Rudan D., Rudan I., Aboyans V., Denenberg J.O., McDermott M.M., Norman P.E., Sampson U.K., Williams L.J., Mensah G.A., Criqui M.H. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 2013; 382(9901): 1329–1340, https://doi.org/10.1016/s0140-6736(13)61249-0.
  5. Schanzer A., Conte M.S. Critical limb ischemia. Curr Treat Options Cardiovasc Med 2010; 12(3): 214–229, https://doi.org/10.1007/s11936-010-0076-7.
  6. Baumgartner I. Peripheral artery occlusive disease a major contributor to cardiovascular public health burden. Eur Heart J 2015; 36(15): 894–896, https://doi.org/10.1093/eurheartj/ehu438.
  7. Reinecke H., Unrath M., Freisinger E., Bunzemeier H., Meyborg M., Lüders F., Gebauer K., Roeder N., Berger K., Malyar N.M. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J 2015; 36(15): 932–938, https://doi.org/10.1093 / eurheartj/ehv006.
  8. Nehler M.R., Duval S., Diao L., Annex B.H., Hiatt W.R., Rogers K., Zakharyan A., Hirsch A.T. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J Vasc Surg 2014; 60(3): 686–695.e2, https://doi.org/10.1016/j.jvs.2014.03.290.
  9. Gulati A., Garcia L., Acharji S. Epidemiology of chronic critical limb ischemia. In: Critical limb ischemia. Springer International Publishing; 2016; p. 9–14, https://doi.org/10.1007/9 78-3-319-31991-9_2.
  10. Карпов Ю.А., Сорокин Е.В. Интенсивное меди­камен­тозное лечение больных с атеросклерозом. Кар­диология 2005; 45(8): 4–7.
  11. Большаков И.Н., Долгих О.А., Кириченко А.К., Ко­тиков А.Р., Горбунова В.О. Липидный спектр и микро­циркуляция при использовании биополимеров в модели атерогенеза. Фундаментальные исследования 2009; S7: 41–42.
  12. Большаков И.Н., Шестакова Л.А., Котиков А.Р., Каптюк Г.И. Экспериментальное атерогенное воспаление магистральных артерий у кроликов. Малоинвазивная технология морфологической реконструкции сосудистой стенки на ранних стадиях атерогенеза. Фундаментальные исследования 2013; 8–2: 343–350.
  13. Большаков И.Н., Шестакова Л.А., Котиков А.Р., Каптюк Г.И. Экспериментальный атерогенез у крыс. Морфологическая реконструкция стенки магистральной артерии полисахаридными биополимерами. Фундаментальные исследования 2013; 10–3: 557–563.
  14. Alimohammadi M., Pichardo-Almarza C., Agu O., Díaz-Zuccarini V. A multiscale modelling approach to understand atherosclerosis formation: а patient-specific case study in the aortic bifurcation. Proc Inst Mech Eng H 2017; 231(5): 378–390, https://doi.org/10.1177/0954411 917697356.
  15. Steinman D.A. Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord 2004; 4(2): 183–197, https://doi .org/10.2174/1568006043336302.
  16. Gimbrone M.A., García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 22(1): 9–15, https://doi.org/ 10.1016/j.carpath.2012.06.006.
  17. Corti R., Fuster V. Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 2011; 32(14): 1709–1719, https://doi.org/10.10 93/eurheartj/ehr068.
  18. Tabas I., Williams K.J., Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007; 116(16): 1832–1844, https://doi.org/10 .1161/circulationaha.106.676890.
  19. Nielsen L.B., Gronholdt M.L.M., Schroeder T.V., Stender S., Nordestgaard B.G. In vivo transfer of lipoprotein(a) into human atherosclerotic carotid arterial intima. Arterioscler Thromb Vasc Biol 1997; 17(5): 905–911, https://do i.org/10.1161/01. atv.17.5.905.
  20. Bartels E.D., Christoffersen C., Lindholm M.W., Nielsen L.B. Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression novelty and significance. Circ Res 2015; 117(11): 933–942, https://doi.org/10.11 61/circresaha.115.307182.
  21. Nordestgaard B.G., Tybjaerg-Hansen A., Lewis B. Influx in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arterioscler Thromb 1992; 12(1): 6–18, https://doi.o rg/10.1161/01.atv.12.1.6.
  22. Donnelly L.H., Bree M.P., Hunter S.E., Keith J.C. Jr., Schaub R.G. Immunoreactive macrophage colony-stimulating factor is increased in atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits after recombinant human macrophage colony-stimulating factor therapy. Mol Reprod Dev 1997; 46(1): 92–95, https://doi.org/10.1002/(sici)1098-2795(199701)46:192::aid-mrd143.0.co;2-5.
  23. Shi W., Wang X., Shih D.M., Laubach V.E., Navab M., Lusis A.J. Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation 2002; 105(17): 2078–2082, https://doi.org/10. 1161/01.cir.0000015853.59427.32.
  24. Poulsen C.B., Al-Mashhadi A.L., von Wachenfeldt K., Bentzon J.F., Nielsen L.B., Al-Mashhadi R.H., Thygesen J., Tolbod L., Larsen J.R., Frøkiær J., Tawakol A., Vucic E., Fredrickson J., Baruch A., Frendéus B., Robertson A.K., Moestrup S.K., Drouet L., Falk E. Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions. Inter J Cardiology 2016; 215: 506–515, https://doi.org/10.1016/j.ijc ard.2016.03.222.
  25. Salonen J.T., Ylä-Herttuala S., Yamamoto R., Butler S., Korpela H., Salonen R., Nyyssönen K., Palinski W., Witztum J.L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992; 339(8798): 883–887, https://doi.org/10.1 016/0140-6736(92)90926-t.
  26. Bergmark C., Wu R., de Faire U., Lefvert A.K., Swedenborg J. Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL. Arterioscler Thromb Vasc Biol 1995; 15(4): 441–445, htt ps://doi.org/10.1161/01.atv.15.4.441.
  27. Шогенова М.Х., Жетишева Р.А., Карпов А.М., Доценко Ю.В., Масенко В.П., Наумов В.Г. Роль окисленных липопротеинов низкой плотности и анти­тел к ним в иммунно-воспалительном процессе при атеросклерозе. Атеросклероз и дислипидемии 2015; 2: 17–21.
  28. Michelsen K.S., Arditi M. Toll-like receptor signaling and atherosclerosis. Curr Opin Hematol 2006; 13(3): 163–168, https://doi.org/10.1 097/01.moh.0000219662.88409.7c.
  29. Stoll G., Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 2006; 37(7): 1923–1932, http s://doi.org/10.1161/01.str.0000226901.34927.10.
  30. Groyer É., Caligiuri G., Laschet-Khallou J., Nicoletti A. Immunological aspects of atherosclerosis. Presse Med 2006; 35(3Pt 2): 475–486, https:// doi.org/10.1016/s0755-4982(06)74622-x.
  31. Rajendran P., Rengarajan T., Thangavel J., Nishigaki Y., Sakthisekaran D., Sethi G., Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9(10): 1057–1069, https://doi.or g/10.7150/ijbs.7502.
  32. Kalinin R.E., Gryaznov S.V., Nikiforov A.A., Kamaev A.A., Shvalb A.P., Slepnev A.A. Nitric oxide synthase and endothelin-1 gene polymorphism in lower limb chronic venous insufficiency. I.P. Pavlov Russian Medical Biological Herald 2015; 23(4): 97,https://doi.org/1 0.17816/pavlovj2015497-102.
  33. Dow C.A., Templeton D.L., Lincenberg G.M., Greiner J.J., Stauffer B.L., DeSouza C.A. Elevations in C-reactive protein and endothelin-1 system activity in humans. Life Sci 2016; 159: 66–70, https://doi. org/10.1016/j.lfs.2015.12.030.
  34. Trinity J.D., Barrett-O’Keefe Z., Ives S.J., Morgan G., Rossman M.J., Donato A.J., Runnels S., Morgan D.E., Gmelch B.S., Bledsoe A.D., Richardson R.S., Wray D.W. Endogenous endothelin-1 and femoral artery shear rate: impact of age and implications for atherosclerosis. J Hypertens 2016; 34(2): 266–273, https://doi.org/10.1097/hjh.0000000000000777.
  35. Shelest B.A. Peripheral vessel wall changes in hypertensive patients with gout. Ter Arkh 2016; 88(5): 43–46, https://doi.org/10.17116/terarkh201688543-46.
  36. Pavlides S., Gutierrez-Pajares J.L., Katiyar S., Jasmin J.F., Mercier I., Walters R., Pavlides C., Pestell R.G., Lisanti M.P., Frank P.G. Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell Tissue Res 2014; 358(3): 821–831, https://doi.org/10.1007/s00441-014-2008-4.
  37. Зборовская И.Б., Галецкий С.А., Комельков А.В. Белки мембранных микродоменов и их участие в онкогенезе. Успехи молекулярной онкологии 2016; 3(3): 16–29.
  38. Engelberger R.P., Limacher A., Kucher N., Baumann F., Silbernagel G., Benghozi R., Do D.D., Willenberg T., Baumgartner I. Biological variation of established and novel biomarkers for atherosclerosis: results from a prospective, parallel-group cohort study. Clin Chim Acta 2015; 447: 16–22, https://doi.org/10.1016/j.cca.2015.05.003.
  39. Rozenberg I., Sluka S.H., Mocharla P., Hallenberg A., Rotzius P., Borén J., Kränkel N., Landmesser U., Borsig L., Lüscher T.F., Eriksson E.E., Tanner F.C. Deletion of L-selectin increases atherosclerosis development in ApoE–/– mice. PLoS One 2011; 6(7): e21675, https://doi.org/10.1371/journal.pone.0021675.
  40. Skopec I.S., Vezikova N.N., Marusenko I.M., Barysheva O.Y., Malafeev A.V., Malygin A.N. Correlation of inflammation biomarkers with the traditional risk factors in patients with acute coronary syndrome. Rational Pharmacotherapy in Cardiology 2016; 12(2): 166–170, https://doi.org/10.20996/1819-6446-2016-12-2-166-170.
  41. Galkina E., Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27(11): 2292–2301, https://doi.org/10.1161/atvbaha.107.149179.
  42. Kitagawa K., Matsumoto M., Sasaki T., Hashimoto H., Kuwabara K., Ohtsuki T., Hori M. Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis 2002; 160(2): 305–310, https://doi.org/10.1016/s0021-9150(01)00587-1.
  43. Signorelli S.S., Anzaldi M., Libra M., Navolanic P.M., Malaponte G., Mangano K., Quattrocchi C., Di Marco R., Fiore V., Neri S. Plasma levels of inflammatory biomarkers in peripheral arterial disease: results of a cohort study. Angiology 2016; 67(9): 870–874, https://doi.org/10.1177/0003319716633339.
  44. Белокопытова И.С., Москалец О.В., Палеев Ф.Н., Зотова О.В. Диагностическое значение растворимых моле­кул адгезии sICAM-1 и sVCAM-1 при ишемической болезни сердца. Атеросклероз и дислипидемии 2013; 4(12): 62–65.
  45. Circulation research thematic synopsis: atherosclerosis. Circ Res 2013; 112(10): e118–e147, https://doi.org/10.1161/circresaha.113.301487.
  46. Al-Ghurabi M.E., Muhi A.A., Al-Mudhafar D.H. Vascular cell adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 as markers of atherosclerosis of NIDDM. American Journal of Life Sciences 2015; 3(1): 22–26, https://doi.org/10.11648/j.ajls.20150301.15.
  47. Bala G., Blykers A., Xavier C., Descamps B., Broisat A., Ghezzi C., Fagret D., Van Camp G., Caveliers V., Vanhove C., Lahoutte T., Droogmans S., Cosyns B., Devoogdt N., Hernot S. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur Heart J Cardiovasc Imaging 2016; 17(9): 1001–1008, https://doi.org/10.1093/ehjci/jev346.
  48. Ni W., Egashira K., Kitamoto S., Kataoka C., Koyanagi M., Inoue S., Imaizumi K., Akiyama C., Nishida K.I., Takeshita A. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 2001; 103(16): 2096–2101, https://doi.org/10.1161/01.cir.103.16.2096.
  49. Tsai M.K., Hsieh C.C., Kuo H.F., Lee M.S., Huang M.Y., Kuo C.H., Hung C.H. Effect of prostaglandin I2 analogs on monocyte chemoattractant protein-1 in human monocyte and macrophage. Clin Exp Med 2015; 15(3): 245–253, https://doi.org/10.1007/s10238-014-0304-7.
  50. Kim C.H., Mitchell J.B., Bursill C.A., Sowers A.L., Thetford A., Cook J.A., van Reyk D.M., Davies M.J. The nitroxide radical TEMPOL prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE–/– mice. Atherosclerosis 2015; 240(1): 234–241, https://doi.org/10.1016/j.atherosclerosis.2015.03.012.
  51. Saitoh T., Kishida H., Tsukada Y., Fukuma Y., Sano J., Yasutake M., Fukuma N., Kusama Y., Hayakawa H. Clinical significance of increased plasma concentration of macrophage colony-stimulating factor in patients with angina pectoris. J Am Coll Cardiol 2000; 35(3): 655–665, https://doi.org/10.1016/s0735-1097(99)00583-5.
  52. Нозадзе Д.Н., Рвачева А.В., Казначеева Е.И., Сер­гиенко И.В. Моноциты в развитии и дестабилизации ате­ро­склеротической бляшки. Атеросклероз и дис­ли­пидемии 2012; 3: 25–36.
  53. Cybulsky M.I., Cheong C., Robbins C.S. Macrophages and dendritic cells: partners in atherogenesis. Circ Res 2016; 118(4): 637–652, https://doi.org/10.1161/circresaha.115.306542.
  54. Seshiah P.N., Kereiakes D.J., Vasudevan S.S., Lopes N., Su B.Y., Flavahan N.A., Goldschmidt-Clermont P.J. Activated monocytes induce smooth muscle cell death: role of macrophage colony-stimulating factor and cell contact. Circulation 2002; 105(2): 174–180, https://doi.org/10.1161/hc0202.102248.
  55. Lind L., Siegbahn A., Lindahl B., Stenemo M., Sundström J., Ärnlöv J. Discovery of new risk markers for ischemic stroke using a novel targeted proteomics chip. Stroke 2015; 46(12): 3340–3347, https://doi.org/10.1161/strokeaha.115.010829.
  56. Andrés V., Pello O.M., Silvestre-Roig C. Macrophage proliferation and apoptosis in atherosclerosis. Curr Opin Lipidol 2012; 23(5): 429–438, https://doi.org/10.1097/mol.0b013e328357a379.
  57. Kan X.H., Zhong X.Z., Zhang W.D., Shi C.Y. Increased circulating macrophage-colony stimulating factor and monocyte chemoattractant protein-1 are predictors of in-hospital events in Chinese patients with unstable angina pectoris. Int J Clin Exp Pathol 2016; 9(2): 2021–2026.
  58. Brånén L., Hovgaard L., Nitulescu M., Bengtsson E., Nilsson J., Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24(11): 2137–2142, https://doi.org/10.1161/01.atv.0000143933.20616.1b.
  59. Ohta H., Wada H., Niwa T., Kirii H., Iwamoto N., Fujii H., Saito K., Sekikawa K., Seishima M. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 2005; 180(1): 11–17, https://doi.org/10.1016/j.atherosclerosis.2004.11.016.
  60. Kober F., Canault M., Peiretti F., Mueller C., Kopp F., Alessi M.C., Cozzone P.J., Nalbone G., Bernard M. MRI follow-up of TNF-dependent differential progression of atherosclerotic wall-thickening in mouse aortic arch from early to advanced stages. Atherosclerosis 2007; 195(2): e93–e99, https://doi.org/10.1016/j.atherosclerosis.2007.06.015.
  61. Chew M., Zhou J., Daugherty A., Eriksson T., Ellermann-Eriksen S., Hansen P.R., Falk E. Thalidomide inhibits early atherogenesis in apoE-deficient mice. APMIS Suppl 2003; 109: 113–116.
  62. Boesten L.S., Zadelaar A.S., van Nieuwkoop A., Gijbels M.J., de Winther M.P., Havekes L.M., van Vlijmen B.J. Tumor necrosis factor-alpha promotes atherosclerotic lesion progression in APOE*3-Leiden transgenic mice. Cardiovasc Res 2005; 66(1): 179–185, https://doi.org/10.1016/j.cardiores.2005.01.001.
  63. Canault M., Peiretti F., Mueller C., Kopp F., Morange P., Rihs S., Portugal H., Juhan-Vague I., Nalbone G. Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus. Atherosclerosis 2004; 172(2): 211–218, https://doi.org/10.1016/j.atherosclerosis.2003.10.004.
  64. Prasad S., Tyagi A.K., Aggarwal B.B. Detection of inflammatory biomarkers in saliva and urine: potential in diagnosis, prevention, and treatment for chronic diseases. Exp Biol Med 2016; 241(8): 783–799, https://doi.org/10.1177/1535370216638770.
  65. Weintraub W.S., Harrison D.G. C-reactive protein, inflammation and atherosclerosis: do we really understand it yet? Eur Heart J 2000; 21(12): 958–960, https://doi.org/10.1053/euhj.2000.2109.
  66. Libby P., Ridker P.M. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 2004; 116(Suppl 6A): 9S–16S, https://doi.org/10.1016/j.amjmed.2004.02.006.
  67. Ikonomidis I., Lekakis J., Revela I., Andreotti F., Nihoyannopoulos P. Increased circulating C-reactive protein and macrophage-colony stimulating factor are complementary predictors of long-term outcome in patients with chronic coronary artery disease. Eur Heart J 2005; 26(16): 1618–1624, https://doi.org/10.1093/eurheartj/ehi192.
  68. Koenig W. High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int J Cardiol 2013; 168(6): 5126–5134, https://doi.org/10.1016/j.ijcard.2013.07.113.
  69. Yu Q., Liu Z., Waqar A.B., Ning B., Yang X., Shiomi M., Graham M.J., Crooke R.M., Liu E., Dong S., Fan J. Effects of antisense oligonucleotides against C-reactive protein on the development of atherosclerosis in WHHL rabbits. Mediators Inflamm 2014; 2014: 979132, https://doi.org/10.1155/2014/979132.
  70. Cossette É., Cloutier I., Tardif K., DonPierre G., Tanguay J.F. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein. Mol Cell Biochem 2013; 373(1–2): 137–147, https://doi.org/10.1007/s11010-012-1482-9.
  71. Wang Q., Huo L., He J., Ding W., Su H., Tian D., Welch C., Hammock B.D., Ai D., Zhu Y. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell migration. Am J Physiol Heart Circ Physiol 2015; 309(11): H1894–H1903, https://doi.org/10.1152/ajpheart.00289.2015.
  72. Wu M.D., Atkinson T.M., Lindner J.R. Platelets and von Willebrand factor in atherogenesis. Blood 2017; 129(11): 1415–1419, https://doi.org/10.1182/blood-2016-07-692673.
  73. Ricci C., Ferri N. Naturally occurring PDGF receptor inhibitors with potential anti-atherosclerotic properties. Vascul Pharmacol 2015; 70: 1–7, https://doi.org/10.1016/j.vph.2015.02.002.
  74. Lee M.H., Kwon B.-J., Koo M.-A., You K.E., Park J.-C. Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O-gallate. Oxid Med Cell Longev 2013; 2013: 827905, https://doi.org/10.1155/2013/827905.
  75. Sihvola R. Platelet-derived growth factor and proinflammatory cytokines in cardiac allograft arteriosclerosis. Academic Dissertation. Helsinki; 2003.
  76. Heldin C.H., Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79(4): 1283–1316.
  77. Pope C.A., Bhatnagar A., McCracken J.P., Abplanalp W., Conklin D.J., O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation novelty and significance. Circ Res 2016; 119(11): 1204–1214, https://doi.org/10.1161/circresaha.116.309279.
  78. Chi H., Messas E., Levine R.A., Graves D.T., Amar S. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein e heterozygote model: pharmacotherapeutic implications. Circulation 2004; 110(12): 1678–1685, https://doi.org/10.1161/01.cir.0000142085.39015.31.
  79. von der Thüsen J.H., Kuiper J., van Berkel T.J., Biessen E.A. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55(1): 133–166, https://doi.org/10.1124/pr.55.1.5.
  80. Vicenová B., Vopálenský V., Burýsek L., Pospísek M. Emerging role of interleukin-1 in cardiovascular diseases. Physiol Res 2009; 58(4): 481–498, https://doi.org/10.1161/circresaha.115.304437.
  81. Folco E.J., Sukhova G.K., Quillard T., Libby P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res 2014; 115(10): 875–883, https://doi.org/10.1161/circresaha.115.304437.
  82. Pagano P.J., Gutterman D.D. The adventitia: the outs and ins of vascular disease. Cardiovasc Res 2007; 75(4): 636–639, https://doi.org/10.1016/j.cardiores.2007.07.006.
  83. Edsfeldt A., Grufman H., Asciutto G., Nitulescu M., Persson A., Nilsson M., Nilsson J., Gonçalves I. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis 2015; 241(2): 443–449, https://doi.org/10.1016/j.atherosclerosis.2015.05.019.
  84. Young J.L., Libby P., Schönbeck U. Cytokines in the pathogenesis of atherosclerosis. Thromb Haemost 2002; 88(4): 554–567.
  85. Nakai Y., Iwabuchi K., Fujii S., Ishimori N., Dashtsoodol N., Watano K., Mishima T., Iwabuchi C., Tanaka S., Bezbradica J.S., Nakayama T., Taniguchi M., Miyake S., Yamamura T., Kitabatake A., Joyce S., Van Kaer L., Onoé K. Natural killer T cells accelerate atherogenesis in mice. Blood 2004; 104(7): 2051–2059, https://doi.org/10.1182/blood-2003-10-3485.
  86. Aslanian A.M., Chapman H.A., Charo I.F. Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2005; 25(3): 628–632, https://doi.org/10.1161/01.atv.0000153046.59370.13.
  87. Voloshyna I., Littlefield M.J., Reiss A.B. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med 2014; 24(1): 45–51, https://doi.org/10.1016/j.tcm.2013.06.003.
  88. Harvey E., Ramji D. Interferon-γ and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 2005; 67(1): 11–20, https://doi.org/10.1016/j.cardiores.2005.04.019.
  89. Tavakoli N.N., Harris A.K., Sullivan D.R., Hambly B.D., Bao S. Interferon-γ deficiency reduces neointimal formation in a model of endoluminal endothelial injury combined with atherogenic diet. Int J Mol Med 2012; 30(3): 545–552, https://doi.org/10.3892/ijmm.2012.1034.
  90. Kunjathoor V.V., Febbraio M., Podrez E.A., Moore K.J., Andersson L., Koehn S., Rhee J.S., Silverstein R., Hoff H.F., Freeman M.W. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 2002; 277(51): 49982–49988, https://doi.org/10.1074/jbc.m209649200.
  91. Febbraio M., Podrez E.A., Smith J.D., Hajjar D.P., Hazen S.L., Hoff H.F., Sharma K., Silverstein R.L. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049–1056, https://doi.org/10.1172/jci9259.
  92. Rigotti A. Scavenger receptors and atherosclerosis. Biol Res 2000; 33(2): 97–103, https://doi.org/10.4067/s0716-97602000000200009.
  93. Мрочек А.Г., Стельмашок В.И., Адзерихо И.Э., Сав­­чук А.И., Авдей П.П. Случай успешного восста­нов­ления кровоснабжения конечности методом чрескожной ультразвуковой ангиопластики у больного обли­тери­ру­ю­щим атеросклерозом левой поверхностной бедренной артерии. Ангиология и сосудистая хирургия 2002; 8(1): 100–104.
  94. Алекян Б.Г., Дубровский В.А., Степанов А.Д., Фила­тов Е.Н., Хазов И.А. Средство для поддержания просвета сосуда или полого органа. Патент РФ 2169544. 2001.
  95. Карпов Д.А., Кочанов И.Н., Кислов И.Ф., Маза­ев С.Н., Самко А.Н., Сухов В.К. Внутрисосудистый про­тез для восстановления и/или сохранения просвета кро­ве­носного сосуда (варианты). Патент РФ 2253410. 2005.
  96. Tu J.V., Wang H., Bowyer B., Green L., Fang J., Kucey D.; Participants in the Ontario Carotid Endarterectomy Registry. Risk factors for death or stroke after carotid endarterectomy: observations from the Ontario Carotid Endarterectomy Registry. Stroke 2003; 34(11): 2568–1573, https://doi.org/10.1161/01.str.0000092491.45227.0f.
  97. L’Heureux N., Dusserre N., Konig G., Victor B., Keire P., Wight T.N., Chronos N.A., Kyles A.E., Gregory C.R., Hoyt G., Robbins R.C., McAllister T.N. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006; 12(3): 361–365, https://doi.org/10.1038/nm1364.
  98. Спиридонов А.А., Морозов К.М., Федорович А.А. Способ хирургического лечения хронической критической ишемии нижних конечностей. Патент РФ 2206274. 2003.
  99. Троицкий А.В., Лысенко Е.Р., Хабазов Р.И., Оре­хов П.Ю., Паршин П.Ю., Королев В.И., Устьянцева Н.В., Малютина Е.Д., Нищенко А.В. Результаты реконструк­тивных операций у больных с поражением артерий голени. Ангиология и сосудистая хирургия 2003; 9(1): 102–108.
  100. Мумладзе Р.Б., Нартов А.П. Способ лечения боль­ных с хронической артериальной недостаточностью нижних конечностей. Патент РФ 2162356. 2001.
  101. Сучкова Ж.В., Бяловский Ю.Ю., Морозов В.Н., Хадарцев А.А. Способ лечения атеросклеротических по­ра­жений сосудов нижних конечностей. Патент РФ 2261734. 2005.
  102. Национальные рекомендации по ведению паци­ентов с заболеваниями артерий нижних конечностей. Рос­сийский согласительный документ. М; 2013.
  103. Большаков И.Н., Долгих О.А., Кириченко А.К., Котиков А.Р., Горбунова В.О. Реконструкция сосудистой стенки при атерогенезе с помощью хитозановых био­поли­меров. Фундаментальные исследования 2009; S7: 42–43.
  104. Долгих О.А., Горбунова В.О. Экспериментальное обоснование реконструкции магистральных артерий ниж­них конечностей при атерогенезе с помощью природных биополимеров. Сибирское медицинское обозрение 2009; 3(57): 88–90.
  105. Котиков А.Р., Долгих О.А., Горбунова В.О., Большаков И.Н., Зыкова Л.Д. Морфометрия сосу­дов нижних конечностей после малоинвазивной рекон­струкции сульфатированным производным хитозана при экспериментальном атерогенезе. В кн.: Материалы X Международной конференции «Современные перспек­тивы в исследовании хитина и хитозана». Н. Новгород; 2010; c. 204–207.
  106. Большаков И.Н., Шестакова Л.А., Кириченко А.К., Али-Риза А.Э., Котиков А.Р., Долгих О.А., Горбунова В.О. Малоинвазивная технология ангиогенеза при реконструк­ции стенки магистральных сосудов нижних конечностей в эксперименте. В кн.: Тезисы докладов III Международной конференции «Современные технологии и возможности реконструктивно-восстановительной и эстетической хирургии». М; 2012; с. 59–61.
  107. Большаков И.Н., Шестакова Л.А., Котиков А.Р. Мало­инвазивная технология ангиогенеза при реконструк­ции стенки магистральных сосудов нижних конечностей в эксперименте. В кн.: Материалы региональной научно-практической конференции «Актуальные вопросы абдоминальной и сосудистой хирургии». Барнаул; 2012; с. 96–97.
  108. Polignano R., Baggiore C., Falciani F., Restelli U., Troisi N., Michelagnoli S., Panigada G., Tatini S., Farina A., Landini G. Efficacy, safety and feasibility of intravenous iloprost in the domiciliary treatment of patients with ischemic disease of the lower limbs. Eur Rev Med Pharmacol Sci 2016; 20(17): 3720–3726.
  109. Norgren L., Hiatt W.R., Dormandy J.A., Nehler M.R., Harris K.A., Fowkes F.G.R. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg 2007; 33(1): S1–S75, https://doi.org/10.1016/j.ejvs.2006.09.024.
  110. Meini S., De Franco V., Auteri A., Setacci C., Di Renzo M., Pieragalli D. Short-term and long-term effects of one-week treatment with intravenous iloprost in critical limb ischemia patients (Leriche-Fontaine stage III and IV). Int Angiol 2005; 24(1): 64–69.
  111. Гавриленко А.В., Котов А.Э., Лоиков Д.А. Хирур­гическое лечение критической ишемии нижних ко­неч­ностей у больных сахарным диабетом. Анналы хирургии 2012; (2): 10–15.
  112. Pels K., Deiner C., Coupland S.E., Noutsias M., Sutter A.P., Schultheiss H.P., Yla-Herttuala S., Schwimmbeck P.L. Effect of adventitial VEGF(165) gene transfer on vascular thickening after coronary artery balloon injury. Cardiovasc Res 2003; 60(3): 664–672, https://doi.org/10.1016/j.cardiores.2003.09.003.
  113. Skóra J., Barć P., Dawiskiba T., Baczyńska D., Mastalerz-Migas A. Angiogenesis after plasmid VEGF165 gene transfer in an animal model. Cent Eur J Immunol 2013; 3: 305–309, https://doi.org/10.5114/ceji.2013.37751.
  114. Деев Р.В., Калинин Р.Е., Червяков Ю.В., Гряз­нов С.В., Мжаванадзе Н.Д., Киселев С.Л., Исаев А.А., Швальб П.Г., Староверов И.Н., Нерсесян Е.Г. Резуль­таты применения гентерапевтического препарата «Нео­васкулген» у пациентов с хронической ишемией нижних конечностей: 1 год наблюдений. Вестник Национального медико-хирургического Центра им. Н.И. Пирогова 2011; 6(4): 20–25.
  115. Червяков Ю.В., Староверов И.Н., Власенко О.Н., Нерсесян Е.Г., Исаев А.А., Деев Р.В. Отдаленные ре­зультаты лечения больных с хронической ишемией нижних конечностей методами непрямой васкуляризации и генотерапии. Ангиология и сосудистая хирургия 2016; 22(1): 29–37.
  116. Деев Р.В., Григорян А.С., Потапов И.В., Кисе­лев С.Л., Исаев А.А. Мировой опыт генотерапии ише­ми­ческих заболеваний. Ангиология и сосудистая хирур­гия 2011; 17(2): 145–154.
  117. Швальб П.Г., Гавриленко А.В., Калинин Р.Е., Червяков Ю.В., Воронов Д.А., Староверов И.Н., Гряз­нов С.В., Мжаванадзе Н.Д., Нерсесян Е.Г., Киселев С.Л., Исаев А.А., Деев Р.В. Эффективность и безопасность применения препарата «Неоваскулген» в комплексной терапии пациентов с хронической ишемией нижних конечностей (IIb–III фаза клинических испытаний). Клеточная трансплантология и тканевая инженерия 2011; 6(3): 76–83.
  118. Kalinin R.E., Suchkov I.A., Pshennikov A.S., Mzhavanadze N.D., Krylov A.A., Plaksa I.L., Deev R.V. Efficacy of medication for therapeutic angiogenesis in combined treatment of patients with diabetes mellitus and critical limb ischemia. Kazanskiy meditsinskiy zhurnal 2016; 97(5): 674–680. https://doi.org/10.17750/kmj2016-674.
  119. Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д., Крылов А.А., Плакса И.Л., Деев Р.В. Опыт использования геннотерапевтических технологий в лечении пациентов с далеко зашедшими стадиями периферического атеро­склероза и сахарным диабетом тяжелого течения. Ангиология и сосудистая хирургия 2016; 22(S2): 140–141.
  120. Deev R.V., Plaksa I.L., Bozo I.Y., Isaev A.A. Long-term 5 years follow-up gene therapy for peripheral arterial disease. Human Gene Therapy 2016; 27(5): A101–A102.
  121. Юдин М.А., Плакса И.Л., Мжаванадзе Н.Д., Кра­ков­ский М.А., Быков В.Н., Мавликеев М.О., Исаев А.А., Калинин Р.Е., Деев Р.В. Оценка системного рас­пределения и ангиогенного эффекта pl-VEGF165 в модели ишемии конечностей. Патология кровообращения и кардиохирургия 2015; 19(S4–2): 33–42.
  122. Белоусов Е.Ю., Сорока В.В., Нохрин С.П., Ряза­нов А.Н. Опыт использования ангиогенной терапии в лечении больных с хронической ишемией нижних ко­неч­­­ностей. Трудный пациент 2014; 12(10): 40–43.
  123. Kleemann R., Zadelaar S., Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 2008; 79(3): 360–376, https://doi.org/10.1093/cvr/cvn120.
  124. Poredos P., Jezovnik M.K. The role of inflammatory biomarkers in the detection and therapy of atherosclerotic disease. Curr Vasc Pharmacol 2016; 14(6): 534–546, https://doi.org/10.2174/1570161114666160625080104.
  125. Kim S., Kawai T., Wang D., Yang Y. Engineering a dual-layer chitosan-lactide hydrogel to create endothelial cell aggregate-induced microvascular networks in vitro and increase blood perfusion in vivo. ACS Appl Mater Interfaces 2016; 8(30): 19245–19255, https://doi.org/10.1021/acsami.6b04431.
  126. Lee S., Valmikinathan C.M., Byun J., Kim S., Lee G., Mokarram N., Pai S.B., Um E., Bellamkonda R.V., Yoon Y.S. Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cell-derived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes. Biomaterials 2015; 63: 158–167, https://doi.org/10.1016/j.biomaterials.2015.06.009.
  127. Auger F.A., D’Orléans-Juste P., Germain L. Adventitia contribution to vascular contraction: hints provided by tissue-engineered substitutes. Cardiovasc Res 2007; 75(4): 669–678, https://doi.org/10.1016/j.cardiores.2007.06.001.
  128. Laflamme K., Roberge C.J., Grenier G., Rémy-Zolghadri M., Pouliot S., Baker K., Labbé R., D’Orléans-Juste P., Auger F.A., Germain L. Adventitia contribution in vascular tone: insights from adventitia-derived cells in a tissue-engineered human blood vessel. FASEB J 2006; 20(8): 1245–1247, https://doi.org/10.1096/fj.05-4702fje.
  129. Herrmann J., Lerman L.O., Rodriguez-Porcel M., Holmes D.R. Jr., Richardson D.M., Ritman E.L., Lerman A. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res 2001; 51(4): 762–766, https://doi.org/10.1016/s0008-6363(01)00347-9.
  130. Han Y., Runge M.S., Brasier A.R. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors. Circ Res 1999; 84(6): 695–703, https://doi.org/10.1161/01.res.84.6.695.
  131. Ni W., Kitamoto S., Ishibashi M., Usui M., Inoue S., Hiasa K., Zhao Q., Nishida K., Takeshita A., Egashira K. Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin II-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 2004; 24(3): 534–539, https://doi.org/10.1161/01.atv.0000118275.60121.2b.
  132. Chan E.C., Datla S.R., Dilley R., Hickey H., Drummond G.R., Dusting G.J. Adventitial application of the NADPH oxidase inhibitor apocynin in vivo reduces neointima formation and endothelial dysfunction in rabbits. Cardiovasc Res 2007; 75(4): 710–718, https://doi.org/10.1016/j.cardiores.2007.06.005.
  133. Potter C.M., Lao K.H., Zeng L., Xu Q. Role of biomechanical forces in stem cell vascular lineage differentiation. Arterioscler Thromb Vasc Biol 2014; 34(10): 2184–2190, https://doi.org/10.1161/atvbaha.114.303423.
  134. Rey F.E., Pagano P.J. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 2002; 22(12): 1962–1971, https://doi.org/10.1161/01.atv.0000043452.30772.18.
  135. Soto-Gutierrez A., Yagi H., Uygun B.E., Navarro-Alvarez N., Uygun K., Kobayashi N., Yang Y.G., Yarmush M.L. Cell delivery: from cell transplantation to organ engineering. Cell Transplant 2010; 19(6): 655–665, https://doi.org/10.3727/096368910x508753.
  136. Nugent H.M., Rogers C., Edelman E.R. Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res 1999; 84(4): 384–391, https://doi.org/10.1161/01.res.84.4.384.
  137. Nugent H.M., Groothuis A., Seifert P., Guerraro J.L., Nedelman M., Mohanakumar T., Edelman E.R. Perivascular endothelial implants inhibit intimal hyperplasia in a model of arteriovenous fistulae: a safety and efficacy study in the pig. J Vasc Res 2002; 39(6): 524–533, https://doi.org/10.1159/000067207.
  138. Nugent H.M., Sjin R.T., White D., Milton L.G., Manson R.J., Lawson J.H., Edelman E.R. Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J Vasc Surg 2007; 46(3): 548–556, https://doi.org/10.1016/j.jvs.2007.04.074.
  139. van der Valk F.M., Kuijk C., Verweij S.L., Stiekema L.C.A., Kaiser Y., Zeerleder S., Nahrendorf M., Voermans C., Stroes E.S.G. Increased haematopoietic activity in patients with atherosclerosis. Eur Heart J 2017; 38(6): 425–432, https://doi.org/10.1093/eurheartj/ehw246.
  140. Van der Veken B., De Meyer G.R., Martinet W. Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opin Ther Targets 2016; 20(10): 1247–1257, https://doi.org/10.1080/14728222.2016.1186650.
  141. Suzuki J., Shimamura M., Suda H., Wakayama K., Kumagai H., Ikeda Y., Akazawa H., Isobe M., Komuro I., Morishita R. Current therapies and investigational drugs for peripheral arterial disease. Hypertens Res 2016; 39(4): 183–191, https://doi.org/10.1038/hr.2015.134.
  142. Liu M.H., Tang Z.H., Li G.H., Qu S.L., Zhang Y., Ren Z., Liu L.S., Jiang Z.S. Janus-like role of fibroblast growth factor 2 in arteriosclerotic coronary artery disease: atherogenesis and angiogenesis. Atherosclerosis 2013; 229(1): 10–17, https://doi.org/10.1016/j.atherosclerosis.2013.03.013.
  143. Braghirolli D.I., Helfer V.E., Chagastelles P.C., Dalberto T.P., Gamba D., Pranke P. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed Mater 2017; 12(2): 025003, https://doi.org/10.1088/1748-605x/aa5bbc.
  144. Капланская И.Б., Гласко Е.Н., Франк Г.А. Ангио­генез, межклеточные контакты и стромально-паренхи­матозные взаимоотношения в норме и патологии. Рос­сийский онкологический журнал 2005; 4: 53–57.
  145. Гавриленко Т.И., Рыжкова Н.А., Пархоменко А.Н. Сосудистый эндотелиальный фактор роста в клинике внутренних заболеваний и его патогенетическое значение. Український кардіологічний журнал 2011; 4: 87–95.
  146. Hoeben A., Landuyt B., Highley M.S., Wildiers H., Van Oosterom A.T., De Bruijn E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549–580, https://doi.org/10.1124/pr.56.4.3.
  147. Barc P., Plonek T., Baczynska D., Radwanska A., Witkiewicz W., Halon A., Kupczynska-Markiewicz D., Strozecki L., Korta K., Skora J. A combination of VEGF165/HGF genes is more effective in blood vessels formation than ANGPT1/VEGF165 genes in an in vivo rat model. Int J Clin Exp Med 2016; 9(7): 12737–12744.
  148. Makarevich P.I., Boldyreva M.A., Gluhanyuk E.V., Efimenko A.Y., Dergilev K.V., Shevchenko E.K., Sharonov G.V., Gallinger J.O., Rodina P.A., Sarkisyan S.S., Hu Y.C., Parfyonova Y.V. Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165. Stem Cell Res Ther 2015; 6: 204, https://doi.org/10.1186/s13287-015-0199-6.
  149. Vemulapalli S., Patel M.R., Jones W.S. Limb ischemia: cardiovascular diagnosis and management from head to toe. Curr Cardiol Rep 2015; 17(7): 611, https://doi.org/10.1007/s11886-015-0611-y.
  150. Cooke J.P., Losordo D.W. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 2015; 116(9): 1561–1578, https://doi.org/10.1161/circresaha.115.303565.
  151. Lederman R.J., Mendelsohn F.O., Anderson R.D., Saucedo J.F., Tenaglia A.N., Hermiller J.B., Hillegass W.B., Rocha-Singh K., Moon T.E., Whitehouse M.J., Annex B.H.; TRAFFIC Investigators. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 2002; 359(9392): 2053–2058, https://doi.org/10.1016/s0140-6736(02)08937-7.
  152. Jazwa A., Florczyk U., Grochot-Przeczek A., Krist B., Loboda A., Jozkowicz A., Dulak J. Limb ischemia and vessel regeneration: is there a role for VEGF? Vascul Pharmacol 2016; 86: 18–30, https://doi.org/10.1016/j.vph.2016.09.003.
  153. Бокерия Л.А., Еремеева М.В., Киселев С.Л., Аракелян В.С., Демидова О.А., Макаренко В.Н. Создание и опыт использования препарата на основе гена VEGF в лечении хронической ишемии нижних конечностей. Клеточная трансплантология и тканевая инженерия 2011; 6(1): 105.
  154. Гавриленко А.В., Воронов Д.А., Бочков Н.П. Стимуляция ангиогенеза в комплексном лечении больных с хронической ишемией нижних конечностей (сочетание реконструктивных операций с генно-инженерными технологиями). Клеточная трансплантология и тканевая инженерия 2011; 6(1): 105–106.
  155. Деев Р.В., Киселев С.Л., Исаев А.А., Приходько А.В., Потапов И.В. Мировой опыт генной терапии хронической ишемии нижних конечностей и ИБС. Клеточная трансплантология и тканевая инженерия 2011; 6(1): 106.
  156. Староверов И.Н., Червяков Ю.В., Кузьмин Р.Н., Нерсесян Е.Г., Деев Р.В. Результаты лечения больных с хроническими облитерирующими заболеваниями ар­те­­рий нижних конечностей препаратом на основе гена, кодирующего сосудистый эндотелиальный фак­тор роста (VEGF). Клеточная трансплантология и тка­не­вая инженерия 2011; 6(1): 106–107.
  157. Швальб П.Г., Калинин Р.Е., Грязнов С.В. Опыт применения препарата на основе гена VEGF у больных с хроническими облитерирующими заболеваниями ниж­них конечностей. Клеточная трансплантология и тка­не­вая инженерия 2011; 6(1): 107.
  158. Ding X., Gao J., Wang Z., Awada H., Wang Y. A shear-thinning hydrogel that extends in vivo bioactivity of FGF2. Biomaterials 2016; 111: 80–89, https://doi.org/10.1016/j.biomaterials.2016.09.026.
  159. Shahzadi L., Yar M., Jamal A., Siddiqi S.A., Chaudhry A.A., Zahid S., Tariq M., Rehman I.U., MacNeil S. Triethyl orthoformate covalently cross-linked chitosan-(poly vinyl) alcohol based biodegradable scaffolds with heparin-binding ability for promoting neovascularisation. J Biomater Appl 2016; 31(4): 582–593, https://doi.org/10.1177/0885328216650125.
  160. Yar M., Gigliobianco G., Shahzadi L., Dew L., Siddiqi S.A., Khan A.F., Chaudhry A.A., ur Rehman I., MacNeil S. Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials 2016; 65(9): 466–476, https://doi.org/10.1080/00914037.2015.1129959.
  161. Huang Y.C., Yang Y.T. Effect of basic fibroblast growth factor released from chitosan-fucoidan nanoparticles on neurite extension. J Tissue Eng Regen Med 2016; 10(5): 418–427, https://doi.org/10.1002/term.1752.
  162. Zhang J., Li G., Gao S., Yao Y., Pang L., Li Y., Wang W., Zhao Q., Kong D., Li C. Monocyte chemoattractant protein-1 released from polycaprolactone/chitosan hybrid membrane to promote angiogenesis in vivo. Journal of Bioactive and Compatible Polymers 2014; 29(6): 572–588, https://doi.org/10.1177/0883911514554146.

Kirichenko А.К., Patlataya N.N., Sharkova А.F., Pevnev А.А., Kontorev К.V., Shapovalova О.V., Gorban М.Е., Bolshakov I.N. Pathomorphism of Limb Major Vessels in Experimental Atherogenic Inflammation. The Role of Adventitial Intimal Relations (Review). Sovremennye tehnologii v medicine 2017; 9(3): 162, https://doi.org/10.17691/stm2017.9.3.20


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank