Метод изучения вызванной стимулом пластичности в нейронных сетях на основе культивирования клеток мозга в микрофлюидных чипах
Культуры диссоциированных клеток мозга на микроэлектродных матрицах (МЭМ) широко используются для изучения фундаментальных механизмов обработки информации и синаптической пластичности. Установлено, что высокочастотная электрическая стимуляция вызывает функциональные изменения в нейронной сети. Тем не менее сложная и однородная морфологическая структура сети культивируемых клеток мозга существенно ограничивает дальнейшее исследование синаптической пластичности на сетевом уровне. В данном исследовании предложен новый подход к проблеме изучения пластичности нейронных сетей с использованием микрофлюидных устройств со специально спроектированными каналами. Микрофлюидные чипы позволяют направлять аксоны и формировать нейронные цепи с двумя подсетями, соединенными синаптическими путями в заданном направлении. Для индукции синаптической пластичности применялась высокочастотная тетаническая стимуляция двух групп электродов, расположенных в области пре- и постсинаптических нейронов. Разработанный метод потенцирования и депрессии заданных функциональных связей в нейронной цепи может быть использован для дальнейшего изучения сетевых эффектов синаптической пластичности, индуцированной в локальной субпопуляции клеток.
- Marom S., Shahaf G. Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys 2002; 35(01): 63–87, https://doi.org/10.1017/s0033583501003742.
- Le Feber J., Stegenga J., Rutten W.L.C. The effect of slow electrical stimuli to achieve learning in cultured networks of rat cortical neurons. PLoS One 2010; 5(1): e8871, https://doi.org/10.1371/journal.pone.0008871.
- Pimashkin A., Gladkov A., Mukhina I., Kazantsev V. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays. Front Neural Circuits 2013; 7: 87, https://doi.org/10.3389/fncir.2013.00087.
- Li Y., Zhou W., Li X., Zeng S., Luo Q. Dynamics of learning in cultured neuronal networks with antagonists of glutamate receptors. Biophys J 2007; 93(12): 4151–4158, https://doi.org/10.1529/biophysj.107.111153.
- Bologna L.L., Nieus T., Tedesco M., Chiappalone M., Benfenati F., Martinoia S. Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 2010; 165(3): 692–704, https://doi.org/10.1016/j.neuroscience.2009.11.018.
- Brewer G.J., Boehler M.D., Ide A.N., Wheeler B.C. Chronic electrical stimulation of cultured hippocampal networks increases spontaneous spike rates. J Neurosci Methods 2009; 184(1): 104–109, https://doi.org/10.1016/j.jneumeth.2009.07.031.
- Jimbo Y., Robinson H.P.C., Kawana A. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans Biomed Eng 1998; 45(11): 1297–1304, https://doi.org/10.1109/10.725326.
- Jimbo Y., Tateno T., Robinson H.P.C. Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys J 1999; 76(2): 670–678, https://doi.org/10.1016/s0006-3495(99)77234-6.
- Wagenaar D.A., Pine J., Potter S.M. Searching for plasticity in dissociated cortical cultures on multi-electrode arrays. J Negat Results Biomed 2006; 5(1): 16, https://doi.org/10.1186/1477-5751-5-16.
- Chiappalone M., Massobrio P., Martinoia S. Network plasticity in cortical assemblies. Eur J Neurosci 2008; 28(1): 221–237, https://doi.org/10.1111/j.1460-9568.2008.06259.x.
- Chiappalone M., Bove M., Vato A., Tedesco M., Martinoia S. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 2006; 1093(1): 41–53, https://doi.org/10.1016/j.brainres.2006.03.049.
- Feber J. le, Rutten W.L.C., Stegenga J., Wolters P.S., Ramakers G.J.A., Pelt J. van. Conditional firing probabilities in cultured neuronal networks: a stable underlying structure in widely varying spontaneous activity patterns. J Neural Eng 2007; 4(2): 54–67, https://doi.org/10.1088/1741-2560/4/2/006.
- Taylor A.M., Blurton-Jones M., Rhee S.W., Cribbs D.H., Cotman C.W., Jeon N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2005; 2(8): 599–605, https://doi.org/10.1038/nmeth777.
- Kanagasabapathi T.T., Ciliberti D., Martinoia S., Wadman W.J., Decré M.M. Dual-compartment neurofluidic system for electrophysiological measurements in physically segregated and functionally connected neuronal cell culture. Front Neuroeng 2011; 4: 13, https://doi.org/10.3389/fneng.2011.00013.
- Takayama Y., Kotake N., Haga T., Suzuki T., Mabuchi K. Formation of one-way-structured cultured neuronal networks in microfluidic devices combining with micropatterning techniques. J Biosci Bioeng 2012; 114(1): 92–95, https://doi.org/10.1016/j.jbiosc.2012.02.011.
- Bisio M., Bosca A., Pasquale V., Berdondini L., Chiappalone M. Emergence of bursting activity in connected neuronal sub-populations. PLoS One 2014; 9(9): e107400, https://doi.org/10.1371/journal.pone.0107400.
- Le Feber J., Postma W., de Weerd E., Weusthof M., Rutten W.L.C. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays. Front Neurosci 2015; 9: 412, https://doi.org/10.3389/fnins.2015.00412.
- Pan L., Alagapan S., Franca E., Leondopulos S.S., DeMarse T.B., Brewer G.J., Wheeler B.C. An in vitro method to manipulate the direction and functional strength between neural populations. Front Neural Circuits 2015; 9: 32, https://doi.org/10.3389/fncir.2015.00032.
- Yoshizumi Y., Honegger T., Berton K., Suzuki H., Peyrade D. Micromotors: trajectory control of self-propelled micromotors using AC electrokinetics (Small 42/2015). Small 2015; 11(42): 5629–5629, https://doi.org/10.1002/smll.201570255.
- Habibey R., Golabchi A., Latifi S., Difato F., Blau A. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. Lab Chip 2015; 15(24): 4578–4590, https://doi.org/10.1039/c5lc01027f.
- Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V. Spiking signatures of spontaneous activity bursts in hippocampal cultures. Front Comput Neurosci 2011; 5: 46, https://doi.org/10.3389/fncom.2011.00046.
- Malishev E., Pimashkin A., Gladkov A., Pigareva Y., Bukatin A., Kazantsev V., Mukhina I., Dubina M. Microfluidic device for unidirectional axon growth. J Phys Condens Matter 2015; 643: 01202, https://doi.org/10.1088/1742-6596/643/1/012025.
- Bi G.Q., Poo M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 1998; 18(24): 10464–10472.
- Debanne D., Gahwiler B.H., Thompson S.M. Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci USA 1994; 91(3): 1148–1152, https://doi.org/10.1073/pnas.91.3.1148.
- Woodin M.A., Ganguly K., Poo M. Coincident pre- and postsynaptic activity modifies gabaergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 2003; 39(5): 807–820, https://doi.org/10.1016/s0896-6273(03)00507-5.
- Chen X., Dzakpasu R. Observed network dynamics from altering the balance between excitatory and inhibitory neurons in cultured networks. Phys Rev E Stat Nonlin Soft Matter Phys 2010; 82(3): 031907, https://doi.org/10.1103/physreve.82.031907.
- Jinno S., Kosaka T. Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus 2010; 20(7): 829–840, https://doi.org/10.1002/hipo.20685.