Автоматизированный комплекс регуляции двигательной активности в реабилитации с помощью вибротактильной обратной связи
В работе представлена методика использования вибротактильной обратной связи для реабилитации после операции на сухожилиях. Задача состоит в ограничении напряжения мышцы руки с помощью вибротактильной обратной связи без превышения заданного порога силы сокращения для предотвращения разрыва сшитых сухожилий в постоперационном периоде.
Цель исследования — разработать автоматизированный комплекс регистрации миографической активности мышц и вибротактильной стимуляции и алгоритм тактильного информирования пациента в момент превышения силы напряжения мышцы для предотвращения травмы (разрыв восстанавливающегося после операции сухожилия) во время реабилитации.
Материалы и методы. Использовали беспроводную систему, состоящую из одноканального миографа, совмещенного с генератором тактильных импульсов (виброактуатор). Система размещается на предплечье и управляется с удаленного компьютера в ручном и автоматическом режимах с помощью программного комплекса, разработанного в среде MATLAB. Анализ миографического сигнала мышц в реальном масштабе времени позволяет определить силу сокращения. При превышении заданного порога (20% от максимального наблюдаемого) система включает серию (длительностью 200 мс) импульсов вибрации. Такой вибростимул информирует человека о сильном напряжении, после чего он прекращает дальнейшее усилие.
Результаты. Установлено, что вибротактильная обратная связь от миографического сигнала воспринимается человеком во временнóм масштабе сотни миллисекунд и позволяет не превышать заданный порог силы сокращения. Данная биологическая обратная связь наиболее физиологична для человека и может автоматически информировать о нежелательных при реабилитации паттернах сокращений мышц, формируя осознанные нормальные двигательные навыки.
- Maaswinkel E., Veeger H.E.J., Dieen J.H. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture. Gait Posture 2014; 39(2): 745–749, https://doi.org/10.1016/j.gaitpost.2013.10.011.
- Štrbac M., Belić M., Isaković M., Kojić V., Bijelić G., Popović I., Radotić M., Došen S., Marković M., Farina D., Keller T. Integrated and flexible multichannel interface for electrotactile stimulation. J Neural Eng 2016; 13: 046014, https://doi.org/10.1088/1741-2560/13/4/046014.
- Li K., Fang Y., Zhou Y., Liu H. Non-invasive stimulation-based tactile sensation for upper-extremity prosthesis: a review. IEEE Sensors Journal 2017; 17(9): 2625–2635, https://doi.org/10.1109/jsen.2017.2674965.
- Svensson P., Wijk U., Björkman A., Antfolk C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev Med Devices 2017; 14(6): 439–447, https://doi.org/10.1080/17434440.2017.1332989.
- Kurzynski M., Jaskolska A., Marusiak J., Wolczowski A., Bierut P., Szumowski L., Witkowski J., Kisiel-Sajewicz K. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback. Comput Biol Med 2017; 87: 311–321, https://doi.org/10.1016/j.compbiomed.2017.06.010.
- Liyanagamage S.A., Bertucco M., Bhanpuri N.H., Sanger T.D. Scaled vibratory feedback can bias muscle use in children with dystonia during a redundant, 1-dimensional myocontrol task. J Child Neurol 2017; 32(2): 161–169, https://doi.org/10.1177/0883073816671830.
- Giesen T., Calcagni M., Elliot D. Primary flexor tendon repair with early active motion. Hand Clinics 2017; 33(3): 465–472, https://doi.org/10.1016/j.hcl.2017.03.001.
- Makarewich C.A., Hutchinson D.T. Tendon transfers for combined peripheral nerve injuries. Hand Clinics 2016; 32(3): 377–338, https://doi.org/10.1016/j.hcl.2016.03.008.
- Sammer D.M., Chung K.C. Tendon transfers: part II. transfers for ulnar nerve palsy and median nerve palsy. Plast Reconstr Surg 2009; 124(3): 212e–221e, https://doi.org/10.1097/prs.0b013e3181b037c7.
- Dunn J.A., Sinnott K.A., Rothwell A.G., Mohammed K.D., Simcock J.W. Tendon transfer surgery for people with tetraplegia: an overview Arch Phys Med Rehabil 2016; 97(6): S75–S80, https://doi.org/10.1016/j.apmr.2016.01.034.
- Starr H.M., Snoddy M., Hammond K.E., Seiler J.G. Flexor tendon repair rehabilitation protocols: a systematic review. J Hand Surg Am 2013; 38(9): 1712–1717.e14, https://doi.org/10.1016/j.jhsa.2013.06.025.
- Higgins A., Lalonde D.H. Flexor tendon repair postoperative rehabilitation. Plast Reconstr Surg Glob Open 2016; 4(11): e1134, https://doi.org/10.1097/gox.0000000000001134.
- Wangdell J., Bunketorp-Käll L., Koch-Borner S., Fridén J. Early active rehabilitation after grip reconstructive surgery in tetraplegia. Arch Phys Med Rehabil 2016; 97(6): S117–S125, https://doi.org/10.1016/j.apmr.2015.09.025.
- Von der Heyde R., Novak C. Rehabilitation of the upper extremity following nerve and tendon reconstruction: when and how. Semin Plast Surg 2015; 29(01): 073–080, https://doi.org/10.1055/s-0035-1544172.
- Ahluwalia S.P., Pandey S., Sarad R., Boparai R.S. Flexor tendon repair rehabilitation protocols: a randomized prospective trial of Kleinert protocol compared with Duran protocol J Clin Orthop Trauma 2015; 6(1): 73, https://doi.org/10.1016/j.jcot.2015.01.053.
- Tanaka T., Amadio P.C., Zhao C., Zobitz M.E., An K.-N. Flexor digitorum profundus tendon tension during finger manipulation. J Hand Ther 2005; 18(3): 330–338, https://doi.org/10.1197/j.jht.2005.04.001.
- Sultana S.S., MacDermid J.C., Grewal R., Rath S. The effectiveness of early mobilization after tendon transfers in the hand: a systematic review. J Hand Ther 2013; 26(1): 1–21, https://doi.org/10.1016/j.jht.2012.06.006.
- Kleinert H.E., Kutz J.E., Atasoy E., Stormo A. Primary repair of flexor tendons. Orthop Clin North Am 1973; 4(4): 865–876. Tripp B.L., Faust D., Jacobs P. Elbow joint position sense after neuromuscular training with handheld vibration. J Athl Train 2009; 44(6): 617–623, https://doi.org/10.4085/1062-6050-44.6.617.
- Либуркина С.П., Васильев А.Н., Яковлев Л.В., Гордлеева С.Ю., Каплан А.Я. Интерфейс мозг-компьютер на основе представления движений с вибротактильной модальностью стимулов. Журнал высшей нервной деятельности им. И.П. Павлова 2017; 67(4): 414–429.
- Каплан А.Я. Нейрофизиологические основания и практические реализации технологии мозг-машинных интерфейсов в неврологической реабилитации. Физиология человека 2016; 42(1): 118–127, https://doi.org/10.7868/s0131164616010100.