Today: Dec 4, 2024
RU / EN
Last update: Oct 30, 2024
Automated Complex of Motion Control Based on Vibrotactile Feedback for Rehabilitation

Automated Complex of Motion Control Based on Vibrotactile Feedback for Rehabilitation

Kutyina D.V., Nakonechny D.G., Motailo A., Pigareva Ya.I., Kiseleva A.N., Kazantsev V.B., Gordleeva S.Yu., Kaplan A.Ya., Pimashkin A.S.
Key words: vibrotactile feedback; neurorehabilitation; surface electromyography; tendon restoration.
2017, volume 9, issue 4, page 36.

Full text

html pdf
2504
1976

This report presents a technique for using vibrotactile feedback for rehabilitation of patients after an operation on the hand with a suture on the tendon. The task is to limit the arm muscle tension using vibrotactile feedback, which aims to prevent exceeding the preset force threshold and thus protect the stitched tendons from rupture in the post-operation period.

The study goals were to develop an automated complex able to record muscle activity (myography) and induce vibrotactile signals; and develop an algorithm able to inform the patient (via tactile sensation) that the muscle tension is exceeded. These developments were aimed at preventing possible tendon rupture and maintaining smooth recovery after surgery.

Materials and Methods. A wireless system consisting of a single-channel myograph combined with a tactile pulse generator (vibration actuator) was used. The system was placed on the forearm and was controlled from a remote computer in both manual and automatic modes using a software package developed in the MATLAB environment. The real-time analysis of the myographic signal allowed us to determine the force of muscle contraction. When the preset threshold (20% of the maximum) is exceeded, the system triggers a short burst (200 ms duration) of vibration pulses. This vibration stimulus informs the subject about the exceeding or redundant muscle tension, after which he/she stops further exercise.

Results. Here we show that the vibrotactile feedback signal lasting hundreds of milliseconds is well perceived by the subject and allows him/her to respond so not to exceed the preset muscle force threshold. This biological feedback is viewed as physiologically favorable for patients because it can automatically inform them about excessive muscle contractions that are undesirable in the rehabilitation period. In the long term, this feedback mechanism may help forming normal patterns in patients.

  1. Maaswinkel E., Veeger H.E.J., Dieen J.H. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture. Gait Posture 2014; 39(2): 745–749, https://doi.org/10.1016/j.gaitpost.2013.10.011.
  2. Štrbac M., Belić M., Isaković M., Kojić V., Bijelić G., Popović I., Radotić M., Došen S., Marković M., Farina D., Keller T. Integrated and flexible multichannel interface for electrotactile stimulation. J Neural Eng 2016; 13: 046014, https://doi.org/10.1088/1741-2560/13/4/046014.
  3. Li K., Fang Y., Zhou Y., Liu H. Non-invasive stimulation-based tactile sensation for upper-extremity prosthesis: a review. IEEE Sensors Journal 2017; 17(9): 2625–2635, https://doi.org/10.1109/jsen.2017.2674965.
  4. Svensson P., Wijk U., Björkman A., Antfolk C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev Med Devices 2017; 14(6): 439–447, https://doi.org/10.1080/17434440.2017.1332989.
  5. Kurzynski M., Jaskolska A., Marusiak J., Wolczowski A., Bierut P., Szumowski L., Witkowski J., Kisiel-Sajewicz K. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback. Comput Biol Med 2017; 87: 311–321, https://doi.org/10.1016/j.compbiomed.2017.06.010.
  6. Liyanagamage S.A., Bertucco M., Bhanpuri N.H., Sanger T.D. Scaled vibratory feedback can bias muscle use in children with dystonia during a redundant, 1-dimensional myocontrol task. J Child Neurol 2017; 32(2): 161–169, https://doi.org/10.1177/0883073816671830.
  7. Giesen T., Calcagni M., Elliot D. Primary flexor tendon repair with early active motion. Hand Clinics 2017; 33(3): 465–472, https://doi.org/10.1016/j.hcl.2017.03.001.
  8. Makarewich C.A., Hutchinson D.T. Tendon transfers for combined peripheral nerve injuries. Hand Clinics 2016; 32(3): 377–338, https://doi.org/10.1016/j.hcl.2016.03.008.
  9. Sammer D.M., Chung K.C. Tendon transfers: part II. transfers for ulnar nerve palsy and median nerve palsy. Plast Reconstr Surg 2009; 124(3): 212e–221e, https://doi.org/10.1097/prs.0b013e3181b037c7.
  10. Dunn J.A., Sinnott K.A., Rothwell A.G., Mohammed K.D., Simcock J.W. Tendon transfer surgery for people with tetraplegia: an overview Arch Phys Med Rehabil 2016; 97(6): S75–S80, https://doi.org/10.1016/j.apmr.2016.01.034.
  11. Starr H.M., Snoddy M., Hammond K.E., Seiler J.G. Flexor tendon repair rehabilitation protocols: a systematic review. J Hand Surg Am 2013; 38(9): 1712–1717.e14, https://doi.org/10.1016/j.jhsa.2013.06.025.
  12. Higgins A., Lalonde D.H. Flexor tendon repair postoperative rehabilitation. Plast Reconstr Surg Glob Open 2016; 4(11): e1134, https://doi.org/10.1097/gox.0000000000001134.
  13. Wangdell J., Bunketorp-Käll L., Koch-Borner S., Fridén J. Early active rehabilitation after grip reconstructive surgery in tetraplegia. Arch Phys Med Rehabil 2016; 97(6): S117–S125, https://doi.org/10.1016/j.apmr.2015.09.025.
  14. Von der Heyde R., Novak C. Rehabilitation of the upper extremity following nerve and tendon reconstruction: when and how. Semin Plast Surg 2015; 29(01): 073–080, https://doi.org/10.1055/s-0035-1544172.
  15. Ahluwalia S.P., Pandey S., Sarad R., Boparai R.S. Flexor tendon repair rehabilitation protocols: a randomized prospective trial of Kleinert protocol compared with Duran protocol J Clin Orthop Trauma 2015; 6(1): 73, https://doi.org/10.1016/j.jcot.2015.01.053.
  16. Tanaka T., Amadio P.C., Zhao C., Zobitz M.E., An K.-N. Flexor digitorum profundus tendon tension during finger manipulation. J Hand Ther 2005; 18(3): 330–338, https://doi.org/10.1197/j.jht.2005.04.001.
  17. Sultana S.S., MacDermid J.C., Grewal R., Rath S. The effectiveness of early mobilization after tendon transfers in the hand: a systematic review. J Hand Ther 2013; 26(1): 1–21, https://doi.org/10.1016/j.jht.2012.06.006.
  18. Kleinert H.E., Kutz J.E., Atasoy E., Stormo A. Primary repair of flexor tendons. Orthop Clin North Am 1973; 4(4): 865–876. Tripp B.L., Faust D., Jacobs P. Elbow joint position sense after neuromuscular training with handheld vibration. J Athl Train 2009; 44(6): 617–623, https://doi.org/10.4085/1062-6050-44.6.617.
  19. Liburkina S.P., Vasilyev A.N., Yakovlev L.V., Gordleeva S.Y., Kaplan A.Y. Motor imagery based brain computer interface with vibrotactile interaction. Zhurnal vysshey nervnoy deyatel’nosti im. I.P. Pavlova 2017; 67(4): 414–429.
  20. Kaplan A.Y. Neurophysiological foundations and practical realizations of the brain–machine interfaces in the technology in neurological rehabilitation. Hum Physiol 2016; 42(1): 103–110, https://doi.org/10.1134/s0362119716010102.
Kutyina D.V., Nakonechny D.G., Motailo A., Pigareva Ya.I., Kiseleva A.N., Kazantsev V.B., Gordleeva S.Yu., Kaplan A.Ya., Pimashkin A.S. Automated Complex of Motion Control Based on Vibrotactile Feedback for Rehabilitation. Sovremennye tehnologii v medicine 2017; 9(4): 36, https://doi.org/10.17691/stm2017.9.4.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank