Сегодня: 21.11.2024
RU / EN
Последнее обновление: 30.10.2024
Восстановление морфологической структуры магистральных артерий с помощью периваскулярной имплантации сульфатированной формы хитозана при экспериментальном атеросклерозе

Восстановление морфологической структуры магистральных артерий с помощью периваскулярной имплантации сульфатированной формы хитозана при экспериментальном атеросклерозе

А.К. Кириченко, А.В. Шульмин, А.Ф. Шаркова, Н.Н. Патлатая, И.Н. Большаков
Ключевые слова: атерогенное воспаление; периваскулярная имплантация хитозана; ишемия задних конечностей; терапевтический ангиогенез; морфологическая реконструкция стенки сосуда; биодеградируемый полимер.
2017, том 9, номер 4, стр. 115.

Полный текст статьи

html pdf
3343
1663

Цель исследования демонстрация восстановления морфологической структуры магистральных артерий задних конечностей кроликов в модели атеросклероза путем периваскулярной имплантации сульфатированной формы хитозана.

Материалы и методы. Исследование выполнено на 24 кроликах, распределенных на четыре группы по 6 животных. Опытной группе кроликов, которая находилась на интенсивной холестериновой диете в течение 110 сут, в околососудистый фасциальный футляр артерии сафена и бедренной артерии левой задней конечности имплантировали 1% гель сульфатированного водорастворимого хитозана. Части животных, также находившихся на холестериновой диете, имплантацию не выполняли. Группа кроликов, получавшая обычную диету вивария, подвергалась периваскулярной имплантации биополимера, а серия из 6 кроликов, тоже находившаяся на обычной диете, служила в качестве интактного контроля. Оценивали толщину стенки бедренной артерии, артерии сафена, средний диаметр их просвета, среднюю площадь просвета новообразованных сосудов в адвентиции.

Результаты. Ежедневная интенсивная холестериновая диета у кроликов в течение 3,5 мес приводит к формированию ярких признаков атерогенного воспаления в интимном и среднем слоях магистральных артерий задних конечностей. Введение в паравазальный футляр бедренной артерии и артерии сафена 1% геля сульфатированного водорастворимого хитозана стимулирует новообразование большого числа микрососудов в месте резорбции полимера, увеличивая удельную площадь новых сосудов. Морфологическая реконструкция магистральных артерий достигнута за счет снижения толщины сосудистой стенки, увеличения просвета сосуда и роста числа микрососудов параадвентициального ложа.

Заключение.Имплантация сульфатированного хитозана в периваскулярный футляр позволяет достичь эффекта терапевтического паравазального ангиогенеза и снижения ранних признаков атерогенного воспаления.

  1. Аронов Д.М. Социальные аспекты атеросклероза и методы его лечения. Русский медицинский журнал 2000; 7: 276.
  2. Андожская Ю.С., Гирина М.Б., Васина Е.Ю. Совре­менные методы оценки микроциркуляции в эфферентной терапии при лечении больных с атеросклерозом. Регионарное кровообращение и микроциркуляция 2002; 1(1): 52–59.
  3. Карпов Ю.А., Сорокин Е.В. Интенсивное медикаментозное лечение больных с атеросклерозом. Кардиология 2005; 45(8): 4–7.
  4. Клименко Е.Д., Кобозева Л.П., Мичунская А.Б., Ха­ба­рина И.Ю. Состояние системы микроциркуляции при длительной регрессии ранних стадий атерогенеза. Бюл­летень экспериментальной биологии и медицины 1988; 105(3): 365–368.
  5. Dua A., Lee J.C. Epidemiology of peripheral arterial disease and critical limb ischemia. Tech Vasc Interv Radiol 2016; 19(2): 91–95, https://doi.org/10.1053/j.tvir.2016.04.001.
  6. Auger F.A., D’Orléans-Juste P., Germain L. Adventitial contribution to vascular contraction: hints provided by tissue-engineered substitutes. Cardiovasc Res 2007; 75(4): 669–678, https://doi.org/10.1016/j.cardiores.2007.06.001.
  7. Laflamme K., Roberge C.J., Grenier G., Rémy-Zolghadri M., Pouliot S., Baker K., Labbé R., D’Orléans-Juste P., Auger F.A., Germain L. Adventitia contribution in vascular tone: insights from adventitia-derived cells in a tissue-engineered human blood vessel. FASEB J 2006; 20(8): 1245–1247, https://doi.org/10.1096/fj.05-4702fje.
  8. Ni W., Kitamoto S., Ishibashi M., Usui M., Inoue S., Hiasa K., Zhao Q., Nishida K., Takeshita A., Egashira K. Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin II-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 2004; 24(3): 534–539, https://doi.org/10.1161/01.atv.0000118275.60121.2b.
  9. Nugent H.M., Sjin R.T., White D., Milton L.G., Manson R.J., Lawson J.H., Edelman E.R. Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J Vasc Surg 2007; 46(3): 548–556, https://doi.org/10.1016/j.jvs.2007.04.074.
  10. Pagano P.J., Gutterman D.D. The adventitia: the outs and ins of vascular disease. Cardiovasc Res 2007; 75(4): 636–639, https://doi.org/10.1016/j.cardiores.2007.07.006.
  11. Rey F.E., Pagano P.J. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 2002; 22(12): 1962–1971, https://doi.org/10.1161/01.atv.0000043452.30772.18.
  12. Большаков И.Н., Шестакова Л.А., Котиков А.Р., Кап­тюк Г.И. Экспериментальный атерогенез у крыс. Морфоло­гическая реконструкция стенки магистральной артерии полисахаридными биополимерами. Фундаментальные ис­следования 2013; 10–3: 557–563.
  13. Kim S., Kawai T., Wang D., Yang Y. Engineering a dual-layer chitosan-lactide hydrogel to create endothelial cell aggregate-induced microvascular networks in vitro and increase blood perfusion in vivo. ACS Appl Mater Interfaces 2016; 8(30): 19245–19255, https://doi.org/10.1021/acsami.6b04431.
  14. Lee S., Valmikinathan C.M., Byun J., Kim S., Lee G., Mokarram N., Pai S.B., Um E., Bellamkonda R.V., Yoon Y.S. Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cell-derived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes. Biomaterials 2015; 63: 158–167, https://doi.org/10.1016/j.biomaterials.2015.06.009.
  15. Большаков И.Н., Долгих О.А., Кириченко А.К., Котиков А.Р., Горбунова В.О. Липидный спектр и микро­циркуляция при использовании биополимеров в модели атерогенеза. Фундаментальные исследования 2009; S7: 41–42.
  16. Климов А.Н., Парфенова Н.С., Голиков Ю.П. К 100-ле­тию создания холестериновой модели атеро­скле­роза. Биомедицинская химия 2012; 58(1): 5–11.
  17. Большаков И.Н., Шестакова Л.А., Котиков А.Р., Кап­тюк Г.И. Экспериментальное атерогенное воспаление магис­тральных артерий у кроликов. Малоинвазивная тех­но­логия морфологической реконструкции сосудистой стен­ки на ранних стадиях атерогенеза. Фундаментальные ис­следования 2013; 8–2: 343–350.
  18. Дзяк Г.В., Коваль Е.Л. Атеросклероз и воспаление. Проблема старения и долголетия 1999; 3: 316–326.
  19. Liu M.H., Tang Z.H., Li G.H., Qu S.L., Zhang Y., Ren Z., Liu L.S., Jiang Z.S. Janus-like role of fibroblast growth factor 2 in arteriosclerotic coronary artery disease: аtherogenesis and angiogenesis. Atherosclerosis 2013; 229(1): 10–17, https://doi.org/10.1016/j.atherosclerosis.2013.03.013.
Kirichenko A.K., Shulmin A.V., Sharkova A.F., Patlataya N.N., Bolshakov I.N. Morphological Reconstruction of Main Arteries by Perivascular Implantation of Sulfated Chitosan in Experimental Atherosclerosis. Sovremennye tehnologii v medicine 2017; 9(4): 115, https://doi.org/10.17691/stm2017.9.4.14


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank