Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Протекторная роль N,N’-диметилтиомочевины и ее влияние на внутриклеточный уровень пероксида водорода при воздействии цисплатина на клетки HeLa Kyoto

Протекторная роль N,N’-диметилтиомочевины и ее влияние на внутриклеточный уровень пероксида водорода при воздействии цисплатина на клетки HeLa Kyoto

А.С. Неруш, К.М. Щукина, А.Г. Орлова
Ключевые слова: HeLa Kyoto; флюоресцентный сенсор; HyPer2; SypHer2; цисплатин; пероксид водорода; N,N’-диметилтиомочевина.
2018, том 10, номер 3, стр. 78.

Полный текст статьи

html pdf
2208
1630

Цель исследования — оценка содержания пероксида водорода (Н2О2) в жизнеспособных и апоптотических клетках HeLa Kyoto при воздействии цисплатина в условиях применения ловушки активных форм кислорода — N,N’-диметилтиомочевины (ДМТМ).

Материалы и методы. Клетки линии HeLa Kyoto, трансфицированные сенсором пероксида водорода HyPer2 или сенсором рН SypHer2, подвергали инкубации с цисплатином в течение 24 ч в присутствии или в отсутствие ДМТМ. Жизнеспособность клеток определяли методом окрашивания трипановым синим и проточной цитофлюориметрии с маркером апоптоза и витальным красителем. Отклик сенсоров определяли отдельно в жизнеспособных клетках и в клетках в стадии раннего апоптоза.

Результаты. Установлено снижение процента жизнеспособных клеток при воздействии цисплатина, которое ингибируется добавлением ДМТМ в инкубационную среду. Выявлено значительное увеличение содержания пероксида водорода в исследуемой культуре при воздействии цисплатина, в то время как при одновременной инкубации с цисплатином и ДМТМ значение было близко к контрольному. Наблюдаемая реакция характерна как для жизнеспособных, так и для апоптозных клеток.

Заключение. Доказаны протекторная роль ДМТМ и участие Н2О2 в гибели опухолевых клеток при воздействии цисплатина.

  1. Florea A.-M., Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011; 3(4): 1351–1371, https://doi.org/10.3390/cancers3011351.
  2. Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364–378, https://doi.org/10.1016/j.ejphar.2014.07.025.
  3. Marullo R., Werner E., Degtyareva N., Moore B., Altavilla G., Ramalingam S.S., Doetsch P.W. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 2013; 8(11): e81162, https://doi.org/10.1371/journal.pone.0081162.
  4. He F., Wang Q., Zheng X.L., Yan J.Q., Yang L., Sun H., Hu L.N., Lin Y., Wang X. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncol Rep 2012; 28(2): 601–605, https://doi.org/10.3892/or.2012.1841.
  5. Wang L., Chanvorachote P., Toledo D., Stehlik C., Mercer R.R., Castranova V., Rojanasakul Y. Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells. Mol Pharmacol 2008; 73(1): 119–127, https://doi.org/10.1124/mol.107.040873.
  6. Ahmad K.A., Iskandar K.B., Hirpara J.L., Clement M.-V., Pervaiz S. Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. Сancer Res 2004; 64(21): 7867–7878, https://doi.org/10.1158/0008-5472.can-04-0648.
  7. Distelhorst C.W., Lam M., McCormick T.S. Bcl-2 inhibits hydrogen peroxide-induced ER Ca2 pool depletion. Oncogene 1996; 12(10): 2051–2055.
  8. Yamakawa H., Ito Y., Naganawa T., Banno Y., Nakashima S., Yoshimura S., Sawada M., Nishimura Y., Nozawa Y., Sakai N. Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurol Res 2000; 22(6): 556–564, https://doi.org/10.1080/01616412.2000.11740718.
  9. Guo H., Aleyasin H., Dickinson B.C., Haskew-Layton R.E., Ratan R.R. Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci 2014; 4(1): 64, https://doi.org/10.1186/2045-3701-4-64.
  10. Belousov V.V., Fradkov A.F., Lukyanov K.A., Staroverov D.B., Shakhbazov K.S., Terskikh A.V., Lukyanov S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 2006; 3(4): 281–286, https://doi.org/10.1038/nmeth866.
  11. Kaminskyy V.O., Piskunova T., Zborovskaya I.B., Tchevkina E.M., Zhivotovsky B. Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy 2012; 8(7): 1032–1044, https://doi.org/10.4161/auto.20123.
  12. Brilkina A.A., Peskova N.N., Dudenkova V.V., Gorokhova A.A., Sokolova E.A., Balalaeva I.V. Monitoring of hydrogen peroxide production under photodynamic treatment using protein sensor HyPer. J Photochem Photobiol B 2018; 178: 296–301, https://doi.org/10.1016/j.jphotobiol.2017.11.020.
  13. Markvicheva K.N., Bogdanova E.A., Staroverov D.B., Lukyanov S., Belousov V.V. Imaging of Intracellular hydrogen peroxide production with hyper upon stimulation of Hela cells with Egf. In: Methods in molecular biology. Humana Press; 2008; p. 76–83, https://doi.org/10.1007/978-1-59745-129-1_6.
  14. Тюрин-Кузьмин П.А. Роль пероксида водорода в ре­гуляции поляризации и миграции фибробластов. Авто­реф. дис. … канд. биол. наук. М; 2011.
  15. Belova A.S., Orlova A.G., Balalaeva I.V., Antonova N.O., Maslennikova A.V., Mishina N.M., Zagaynova E.V. Hydrogen peroxide detection in viable and apoptotic tumor cells under action of cisplatin and bleomycin. Photonics & Lasers in Medicine 2016; 5(2): 113–121, https://doi.org/10.1515/plm-2015-0047.
  16. Floriano-Sánchez E., Villanueva C., Medina-Campos O.N., Rocha D., Sánchez-González D.J., Cárdenas-Rodríguez N., Pedraza-Chaverrí J. Nordihydroguaiaretic acid is a potent in vitro scavenger of peroxynitrite, singlet oxygen, hydroxyl radical, superoxide anion and hypochlorous acid and prevents in vivo ozone-induced tyrosine nitration in lungs. Free Radic Res 2006; 40(5): 523–533, https://doi.org/10.1080/10715760500419365.
  17. Kim S., Yamamoto K., Nakamura Y., Otoyo Y., Yamatodani A. A possible mechanism of cisplatin-induced tumor necrosis factor (TNF)-α production in murine macrophages. Pharmacology & Pharmacy 2013; 4(2): 146–151, https://doi.org/10.4236/pp.2013.42021.
  18. Curtis W.E., Muldrow M.E., Parker N.B., Barkley R., Linas S.L., Repine J.E. N,N’-dimethylthiourea dioxide formation from N,N’-dimethylthiourea reflects hydrogen peroxide concentrations in simple biological systems. Proc Natl Acad Sci USA 1988; 85(10): 3422–3425, https://doi.org/10.1073/pnas.85.10.3422.
  19. Toth K.M., Clifford D.P., Berger E.M., White C.W., Repine J.E. Intact human erythrocytes prevent hydrogen peroxide-mediated damage to isolated perfused rat lungs and cultured bovine pulmonary artery endothelial cells. J Clin Invest 1984; 74(1): 292–295, https://doi.org/10.1172/jci111414.
  20. Santos N.A., Bezerra C.S., Martins N.M., Curti C., Bianchi M.L., Santos A.C. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 2007; 61(1): 145–155, https://doi.org/10.1007/s00280-007-0459-y.
  21. Jiang M., Wei Q., Pabla N., Dong G., Wang C.Y., Yang T., Smith S.B., Dong Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 2007; 73(9): 1499–1510, https://doi.org/10.1016/j.bcp.2007.01.010.
  22. dos Santos N.A., Martins N.M., Curti C., Pires Bianchi M. de L., dos Santos A.C. Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats. Chem Biol Interact 2007; 170(3): 177–186, https://doi.org/10.1016/j.cbi.2007.07.014.
  23. Baek S.M., Kwon C.H., Kim J.H., Woo J.S., Jung J.S., Kim Y.K. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med 2003; 142(3): 178–186, https://doi.org/10.1016/s0022-2143(03)00111-2.
  24. Shirmanova M.V., Druzhkova I.N., Lukina M.M., Matlashov M.E., Belousov V.V., Snopova L.B., Prodanetz N.N., Dudenkova V.V., Lukyanov S.A., Zagaynova E.V. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2. Biochim Biophys Acta 2015; 1850(9): 1905–1911, https://doi.org/10.1016/j.bbagen.2015.05.001.
  25. Belova A.S., Orlova A.G., Brilkina А.А., Maslennikova A.V. The sensitivity of Hela Kyoto cell line transfected with sensor HyPer2 to cisplatin. Sovremennye tehnologii v medicine 2014; 6(4): 7–13.
  26. Brozovic A., Ambriović-Ristov A., Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 2010; 40(4): 347–359, https://doi.org/10.3109/10408441003601836.
  27. Sancho-Martínez S.M., Piedrafita F.J., Cannata-Andía J.B., López-Novoa J.M., López-Hernández F.J. Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol Sci 2011; 122(1): 73–85, https://doi.org/10.1093/toxsci/kfr098.
  28. Pestell K.E., Hobbs S.M., Titley J.C., Kelland L.R., Walton M.I. Effects of p53 status on sensitivity to platinum complexes in a human ovarian cancer cell line. Mol Pharmacol 2000; 57(3): 503–511, https://doi.org/10.1124/mol.57.3.503.
  29. Segal-Bendirdjian E., Jacquemin-Sablon A. Cisplatin resistance in a murine leukemia cell line is associated with a defective apoptotic process. Exp Cell Res 1995; 218(1): 201–212, https://doi.org/10.1006/excr.1995.1148.
  30. Gonzalez V.M., Fuertes M.A., Alonso C., Perez J.M. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001; 59(4): 657–663, https://doi.org/10.1124/mol.59.4.657.
  31. Cepeda V., Fuertes M.A., Castilla J., Alonso C., Quevedo C., Pérez J.M. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 2007; 7(1): 3–18, https://doi.org/10.2174/187152007779314044.
  32. Eguchi Y., Shimizu S., Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57(10): 1835–1840.
  33. Tenopoulou M., Doulias P.T., Barbouti A., Brunk U., Galaris D. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J 2005; 387(3): 703–710, https://doi.org/10.1042/bj20041650.
Nerush A.S., Shchukina K.M., Orlova А.G. The Protective Role of N,N’-Dimethylthiourea and Its Effect on Hydrogen Peroxide Level of Hela Kyoto Cells under Cisplatin Action. Sovremennye tehnologii v medicine 2018; 10(3): 78, https://doi.org/10.17691/stm2018.10.3.9


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank