Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Индивидуальные устойчивые паттерны ритмов мозга человека как отражение психических процессов

Индивидуальные устойчивые паттерны ритмов мозга человека как отражение психических процессов

Г.А. Иваницкий
Ключевые слова: ЭЭГ; ритмы мозга; когнитивная деятельность; эмоции; когнитивное пространство; когновизор; психопатология; угнетенное сознание.
2019, том 11, номер 1, стр. 116.

Полный текст статьи

html pdf
3958
2074

Предпринята попытка подытожить результаты исследований, проводимых нами на протяжении более чем двадцати лет. В 1997 г. мы впервые опубликовали данные, свидетельствующие, что тип выполняемого человеком задания (пространственное или арифметическое) может быть распознан по спектрам текущей ЭЭГ и с применением искусственной нейронной сети с надежностью от 70 до 98% (в зависимости от испытуемого). Дальнейшая разработка темы привела нас к пониманию того, что всякая устойчивая мыслительная деятельность сопровождается появлением характерных ритмических паттернов в ЭЭГ человека. Ритмы ЭЭГ, в совокупности образующие паттерн, различаются по частоте и топографии. Когнитивные паттерны ритмов ЭЭГ обладают рядом принципиальных свойств. Они высокоиндивидуальны, устойчивы для каждого данного индивида и сохраняются годами (медленно изменяясь), высокоспецифичны для каждого конкретного вида когнитивной деятельности.

В дальнейшем было обнаружено, что возникающие паттерны ритмов мозга не только различны для разных видов когнитивных заданий, но находятся друг с другом в определенных отношениях, повторяющих отношения психологических свойств заданий. Основываясь на этом факте, мы разработали метод построения карт когнитивного пространства человека. Выяснилось, что аналогичным образом можно строить карты сенсорно-эмоционального пространства человека.

В экспериментах с предъявлением эквивалентных заданий на слух и зрительно мы установили, что паттерны ритмов отражают именно характер мыслительных действий, а не особенности сенсорного восприятия.

Разработанные методики распознавания характера ментального состояния и построения карт психического пространства находят практическое применение, в том числе в медицине. При психических заболеваниях нарушаются процессы мышления, и мы видим это в изменении когнитивных ритмических паттернов ЭЭГ. При угнетении сознания эмоционально-сенсорные пространства начинают отражать физические свойства предъявляемых пациентам стимулов вместо их эмоционального содержания.

Накопленные знания дали возможность разработать макет устройства (названного «когновизор»), которое позволяет в реальном масштабе времени отслеживать ход мышления человека с отображением процесса на карте индивидуального когнитивного пространства.

  1. Kamitani Y., Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci 2005; 8(5): 679–685, https://doi.org/10.1038/nn1444.
  2. Иваницкий Г.А. Распознавание типа решаемой в уме задачи по нескольким секундам ЭЭГ с помощью обу­ча­емого классификатора. Журнал высшей нервной дея­тельности им. И.П. Павлова 1997; 47(4): 743–747.
  3. Иваницкий Г.А., Николаев А.Р., Иваницкий А.М. Ис­­пользование искусственных нейросетей для рас­позна­вания типа мыслительных операций по ЭЭГ. Авиа­космическая и экологическая медицина 1997; 31(6): 23–28.
  4. Haxby J.V., Gobbini M.I., Furey M.L., Ishai A., Schouten J.L., Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001; 293(5539): 2425–2430, https://doi.org/10.1126/science.1063736.
  5. Pietrini P., Furey M.L., Ricciardi E., Gobbini M.I., Wu W.H., Cohen L., Guazzelli M., Haxby J.V. Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci U S A 2004; 101(15): 5658–5663, https://doi.org/10.1073/pnas.0400707101.
  6. Shinkareva S.V., Mason R.A., Malave V.L., Wang W., Mitchell T.M., Just M.A. Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings. PLoS One 2008; 3(1): e1394, https://doi.org/10.1371/journal.pone.0001394.
  7. Nishimoto S., Vu A.T., Naselaris T., Benjamini Y., Yu B., Gallant J.L. Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 2011; 21(19): 1641–1646, https://doi.org/10.1016/j.cub.2011.08.031.
  8. Mitchell T.M., Hutchinson R., Niculescu R.S., Pereira F., Wang X., Just M., Newman S. Learning to decode cognitive states from brain images. Machine Learning 2004; 57(1/2): 145–175, https://doi.org/10.1023/b:mach.0000035475.85309.1b.
  9. Mitchell T.M., Shinkareva S.V., Carlson A., Chang K.M., Malave V.L., Mason R.A., Just M.A. Predicting human brain activity associated with the meanings of nouns. Science 2008; 320(5880): 1191–1195, https://doi.org/10.1126/science.1152876.
  10. Wolpaw J.R., McFarland D.J., Vaughan T.M. Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 2000; 8(2): 222–226, https://doi.org/10.1109/86.847823.
  11. Peters B.O., Pfurtscheller G., Flyvbjerg H. Automatic differentiation of multichannel EEG signals. IEEE Trans Biomed Eng 2001; 48(1): 111–116, https://doi.org/10.1109/10.900270.
  12. Bobrov P., Frolov A., Cantor C., Fedulova I., Bakhnyan M., Zhavoronkov A. Brain-computer interface based on generation of visual images. PLoS One 2011; 6(6): e20674, https://doi.org/10.1371/journal.pone.0020674.
  13. Бобров П.Д., Коршаков А.В., Рощин В.Ю., Фро­лов А.А. Байесовский подход к реализации интерфейса мозг-компьютер, основанного на представлении движений. Журнал высшей нервной деятельности им. И.П. Пав­ло­ва 2012; 62(1): 89–99.
  14. Del R. Millan J., Mourino J., Franze M., Cincotti F., Varsta M., Heikkonen J., Babiloni F. A local neural classifier for the recognition of EEG patterns associated with mental tasks. IEEE Trans Neural Netw 2002; 13(3): 678–686, https://doi.org/10.1109/tnn.2002.1000132.
  15. Wang Q., Sourina O. Real-time mental arithmetic task recognition from EEG signals. IEEE Trans Neural Syst Rehabil Eng 2013; 21(2): 225–232, https://doi.org/10.1109/tnsre.2012.2236576.
  16. Бардин К.В. Проблема порогов чувствительности и психофизические методы. М: Наука; 1976.
  17. Измайлов Ч.А. Сферическая модель цветораз­личения. М: Изд-во МГУ, 1980.
  18. Измайлов Ч.А., Соколов Е.Н., Черноризов А.М. Психо­физиология цветового зрения. М: Изд-во МГУ, 1989.
  19. Забродин Ю.М., Лебедев А.Н. Психофизиология и психофизика. М: Наука, 1977.
  20. Lomov B.F., Ivanitskii A.M. Connection between psychology and physiology in the investigation of perception. Human Physiology 1977; 3(6): 753–760.
  21. Терехина А.Ю. Многомерное шкалирование в психологии. Психологический журнал 1983; 4(1): 77–88.
  22. Huth A.G., Nishimoto S., Vu A.T., Gallant J.L. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 2012; 76(6): 1210–1224, https://doi.org/10.1016/j.neuron.2012.10.014.
  23. Иваницкий Г.А. Распознавание типа решаемой задачи по нескольким секундам ЭЭГ с помощью обучаемого классификатора. Дис. … докт. биол. наук. М; 2007.
  24. Rumelhart D.E., McClelland J.L., and the PDP Research Group. Parallel distributed processing. Cambridge, Mass.: MIT Press; 1986.
  25. Роик А.О., Иваницкий Г.А. Нейрофизиологическая модель когнитивного пространства. Журнал высшей нервной деятельности им. И.П. Павлова 2011; 61(6): 688–696.
  26. Роик А.О., Иваницкий Г.А., Иваницкий А.М. Ког­ни­тивное пространство человека: совпадение мо­де­лей, построенных на основе анализа ритмов мозга и на психометрических измерениях. Российский физио­ло­гический журнал им. И.М. Сеченова 2012; 98(11): 1314–1328.
  27. Sammon J.W. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969; C-18(5): 401–409, https://doi.org/10.1109/t-c.1969.222678.
  28. Atanov M.S., Ivanitsky G.A., Ivanitsky A.M. Cognitive brain–computer interface and probable aspects of its practical application. Human Physiology 2016; 42(3): 235–240, https://doi.org/10.1134/s0362119716030038.
  29. Таротин И.В., Атанов М.С., Иваницкий Г.А. Макет устройства слежения за когнитивной деятельностью человека в реальном времени (“когновизор”). Журнал высшей нервной деятельности им. И.П. Павлова 2017; 67(4): 493–503, https://doi.org/10.7868/s0044467717040116.
  30. Николаев А.Р., Иваницкий Г.А., Иваницкий А.М. Воспроизводящиеся паттерны альфа-ритма ЭЭГ при решении психологических задач. Физиология человека 1998; 24(3): 1–8.
  31. Иваницкий Г.А., Наумов Р.А., Иваницкий А.М. Техно­логия определения типа совершаемой в уме мысленной операции по рисунку электроэнцефалограммы. Технологии живых систем 2007; 4(5–6): 20–29.
  32. Атанов М.С., Иваницкий Г.А. Оптимизация алгоритма распознавания типа текущей мыслительной деятельности на основе данных ЭЭГ. В кн.: XVII Всероссийская научно-техническая конференция «Нейроинформатика-2015». Часть 1. М: НИЯУ МИФИ; 2015; с. 88–96.
  33. Роик А.О. Кодирование особенностей когнитивной дея­тельности в ритмическом рисунке ЭЭГ. Автореф. дис. … канд. биол. наук. М; 2012.
  34. Ильюченок И.Р. Различие частотных характеристик ЭЭГ при восприятии положительно-эмоциональных, отрицательно-эмоциональных и нейтральных слов. Жур­нал высшей нервной деятельности им. И.П. Павлова 1996; 46(3): 457–468.
  35. Ильюченок И.Р., Савостьянов А.Н., Валеев Р.Г. Динамика спектральных характеристик тета- и альфа-диапазонов ЭЭГ при негативной эмоциональной реакции. Журнал высшей нервной деятельности им. И.П. Павлова 2001; 51(5): 563–571.
  36. Костюнина М.Б. Энцефалограмма человека при мыс­ленном воспроизведении эмоционально-окрашенных событий. Журнал высшей нервной деятельности им. И.П. Пав­лова 1998; 48(2): 213–221.
  37. Колбенева М.Г., Александров Ю.И. Органы чувств, эмоции и прилагательные русского языка. В кн.: Лингво-психологический словарь. Языки славянских культур. М; 2010.
  38. Kolbeneva M.G., Alexandrov Y.I. Mental reactivation and pleasantness judgment of experience related to vision, hearing, skin sensations, taste and olfaction. PLoS One 2016; 11(7): e0159036, https://doi.org/10.1371/journal.pone.0159036.
  39. Портнова Г.В., Иваницкий Г.А., Шарова Е.В., Ива­ницкий А.М. Исследование ритмов мозга при действии эмоционально значимых стимулов у здоровых взрослых, детей и больных в коме. Технологии живых систем 2012; 9(5): 3–13.
  40. Портнова Г.В., Гладун К.В., Шарова Е.В., Ива­ницкий А.М. Реакция мозга на действие эмоционально значимых стимулов у больных с черепно-мозговой травмой при угнетении и восстановлении сознания. Журнал высшей нервной деятельности им. И.П. Павлова 2013; 63(6): 753, https://doi.org/10.7868/s0044467713060142.
  41. Portnova G., Stebakova D., Ivanitsky G. The EEG-based emotion classification in tactile, olfactory, acoustic and visual modalities. In: Proceedings of the 2nd International conference on computer-human interaction research and applications. Vol. 1: CHIRA. SCITEPRESS — Science and Technology Publications; 2018; p. 93–99, https://doi.org/10.5220/0006892100930099.
  42. Баклушев М.Е., Иваницкий Г.А., Атанов М.С., Иваницкий А.М. Снижение устойчивости паттернов, соот­ветствующих разным типам мышления, при шизофрении. Журнал высшей нервной деятельности им. И.П. Павлова 2016; 66(5): 579–589, https://doi.org/10.7868/s0044467716050038.
  43. Баклушев М.Е. Нестабильность ритмических ха­рактеристик ЭЭГ при мышлении у больных шизофренией. Дис. … канд. мед. наук. М; 2018.
  44. Баклушев М.Е., Иваницкий Г.А., Иваницкий А.М. Нарушение оценки значимости информации при шизофрении. Успехи физиологических наук 2016; 47(1): 34–47.
  45. Portnova G.V., Atanov M.S. EEG of patients in coma after traumatic brain injury reflects physical parameters of auditory stimulation but not its emotional content. Brain Injury 2018; 33(3): 370–376, https://doi.org/10.1080/02699052.2018.1553310.
  46. Fink A., Grabner R.H., Neuper C., Neubauer A.C. EEG alpha band dissociation with increasing task demands. Brain Res Cogn Brain Res 2005; 24(2): 252–259, https://doi.org/10.1016/j.cogbrainres.2005.02.002.
  47. Таротин И.В., Иваницкий Г.А. Ритмы ЭЭГ, свя­зан­ные с движением и пространственным мышлением: гомо­логичны ли они? Журнал высшей нервной деятельности им. И.П. Павлова 2014; 64(6): 615–626.
  48. Lega B.C., Jacobs J., Kahana M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 2011; 22(4): 748–761, https://doi.org/10.1002/hipo.20937.
  49. Ekstrom A.D., Caplan J.B., Ho E., Shattuck K., Fried I., Kahana M.J. Human hippocampal theta activity during virtual navigation. Hippocampus 2005; 15(7): 881–889, https://doi.org/10.1002/hipo.20109.
Ivanitsky G.A. Individual Stable Patterns of Human Brain Rhythms as a Reflection of Mental Processes. Sovremennye tehnologii v medicine 2019; 11(1): 116, https://doi.org/10.17691/stm2019.11.1.14


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank