Сегодня: 22.01.2025
RU / EN
Последнее обновление: 27.12.2024
Новый метод обработки, окрашивания и визуализации тканей, содержащих металлические имплантаты и очаги внескелетной минерализации

Новый метод обработки, окрашивания и визуализации тканей, содержащих металлические имплантаты и очаги внескелетной минерализации

Р.А. Мухамадияров, Л.А. Богданов, С.В. Мишинов, А.Г. Кутихин
Ключевые слова: сканирующая электронная микроскопия; металлические имплантаты; стенты; минерализация сосудов; кальцификация сосудов; имплантация; биосовместимость.
2020, том 12, номер 4, стр. 13.

Полный текст статьи

html pdf
1662
1898

Цель исследования — оценить эффективность использования оригинального метода обработки, окрашивания и визуализации тканей, содержащих цельнометаллические медицинские изделия или их прототипы, а также очаги внескелетной минерализации, для их последующего изучения с помощью сканирующей электронной микроскопии в обратно-рассеянных электронах.

Материалы и методы. После фиксации в 10% формалине (24 ч) биоматериал (пластина из никелида титана с окружающими тканями после подкожной имплантации, пластины из запатентованного титанового сплава с окружающими тканями после краниопластики, первичные и вторичные кальцифицированные атеросклеротические бляшки) постфиксировали 1% тетраоксидом осмия (12 ч) и затем окрашивали 2% водным раствором тетраоксида осмия (48 ч). Далее образцы окрашивали спиртовым раствором 2% уранилацетата (5 ч), обезвоживали изопропанолом (5 ч) и ацетоном (1 ч), пропитывали смесью ацетона с эпоксидной смолой Epon (1:1, 6 ч), после чего переносили в свежую порцию эпоксидной смолы (24 ч) и далее проводили полимеризацию при 60°C. После шлифовки и полировки выполняли контрастирование цитратом свинца (7 мин), напыляли эпоксидные блоки углеродом и визуализировали образцы при помощи сканирующей электронной микроскопии в обратно-рассеянных электронах. Элементный состав изучали при помощи рентгеноспектрального микроанализа.

Результаты. Разработанный метод позволяет достичь высокого качества получаемых изображений на увеличениях до пяти тысяч раз, предоставляет возможность идентифицировать форму и структуру интактных металлических и минеральных включений, а также типировать окружающие их клетки, отличая по форме и цитоплазматическому содержимому клетки мезенхимального ряда и иммунокомпетентные клетки. Помимо толщины соединительнотканной капсулы и лейкоцитарной инфильтрации, метод дает возможность оценивать количество и площадь новообразованных сосудов малого калибра, являющихся суррогатным маркером воспаления.

Заключение. Представленный метод позволяет удовлетворительно исследовать структуру образцов, для которых невозможна или значительно затруднена резка, при этом качество полученного изображения на порядок превышает качество изображения, получаемого при световой микроскопии.

  1. Timmermans F.J., Otto C. Contributed review: review of integrated correlative light and electron microscopy. Rev Sci Instrum 2015; 86(1): 011501, https://doi.org/10.1063/1.4905434.
  2. Combs C.A., Shroff H. Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci 2017; 79: 2.1.1–2.1.25, https://doi.org/10.1002/cpns.29.
  3. Ryan J., Gerhold A.R., Boudreau V., Smith L., Maddox P.S. Introduction to modern methods in light microscopy. Methods Mol Biol 2017; 1563: 1–15, https://doi.org/10.1007/978-1-4939-6810-7_1.
  4. Mukhamadiyarov R.A., Sevostyanova V.V., Shishkova D.K., Nokhrin A.V., Sidorova O.D., Kutikhin A.G. Grinding and polishing instead of sectioning for the tissue samples with a graft: implications for light and electron microscopy. Micron 2016; 85: 1–7, https://doi.org/10.1016/j.micron.2016.03.005.
  5. Sharma S.P., Dahal K., Khatra J., Rosenfeld A., Lee J. Percutaneous coronary intervention vs coronary artery bypass grafting for left main coronary artery disease? A systematic review and meta-analysis of randomized controlled trials. Cardiovasc Ther 2017; 35(3), https://doi.org/10.1111/1755-5922.12260.
  6. Calvet D., Mas J.L.; Carotid Stenosis Trialists’ Collaboration. Symptomatic carotid stenosis: is stenting as safe and effective as carotid endarterectomy? Curr Opin Neurol 2017; 30(1): 22–27, https://doi.org/10.1097/WCO.0000000000000409.
  7. Zanotti B., Zingaretti N., Verlicchi A., Robiony M., Alfieri A., Parodi P.C. Cranioplasty: review of materials. J Craniofac Surg 2016; 27(8): 2061–2072, https://doi.org/10.1097/SCS.0000000000003025.
  8. Rony L., Lancigu R., Hubert L. Intraosseous metal implants in orthopedics: a review. Morphologie 2018; 102(339): 231–242, https://doi.org/10.1016/j.morpho.2018.09.003.
  9. Лотков А.И., Матвеева В.Г., Антонова Л.В., Кашин О.А., Кудряшов А.Н. Основные направления модификации поверхности металлических эндоваскулярных стентов в решении проблемы рестенозов (обзор, 1 часть). Комплексные проблемы сердечно-сосудистых заболеваний 2017; 6(1): 122–130, https://doi.org/10.17802/2306-1278-2017-1-122-130.
  10. Лотков А.И., Матвеева В.Г., Антонова Л.В., Кашин О.А., Кудряшов А.Н. Основные направления модификации поверхности металлических эндоваскулярных стентов в решении проблемы рестенозов (обзор, 2 часть). Комплексные проблемы сердечно-сосудистых заболеваний 2017; 6(3): 131–142, https://doi.org/10.17802/2306-1278-2017-6-3-131-142.
  11. Wu M., Rementer C., Giachelli C.M. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 2013; 93(4): 365–373, https://doi.org/10.1007/s00223-013-9712-z.
  12. Lanzer P., Boehm M., Sorribas V., Thiriet M., Janzen J., Zeller T., St Hilaire C., Shanahan C. Medial vascular calcification revisited: review and perspectives. Eur Heart J 2014; 35(23): 1515–1525, https://doi.org/10.1093/eurheartj/ehu163.
  13. Kostyunin A.E., Yuzhalin A.E., Ovcharenko E.A., Kutikhin A.G. Development of calcific aortic valve disease: do we know enough for new clinical trials? J Mol Cell Cardiol 2019; 132: 189–209, https://doi.org/10.1016/j.yjmcc.2019.05.016.
  14. Bre L.P., McCarthy R., Wang W. Prevention of bioprosthetic heart valve calcification: strategies and outcomes. Curr Med Chem 2014; 21(22): 2553–2564, https://doi.org/10.2174/0929867321666131212151216.
  15. Мухамадияров Р.А., Кутихин А.Г. Исследование нормальной и патологической микроскопической анатомии кровеносных сосудов при помощи сканирующей электронной микроскопии в обратнорассеянных электронах. Фундаментальная и клиническая медицина 2019; 4(1): 6–14, https://doi.org/10.23946/2500-0764-2019-4-1-6-14.
Mukhamadiyarov R.A., Bogdanov L.A., Mishinov S.V., Kutikhin A.G. A Novel Technique for Preparation, Staining, and Visualization of Tissue with Metal Implants and Extraskeletal Calcification Areas. Sovremennye tehnologii v medicine 2020; 12(4): 13, https://doi.org/10.17691/stm2020.12.4.02


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank