Биодеградация резорбируемых магниевых сплавов, перспективных для разработки эндопротезов, in vitro
Цель исследования — изучить характер и скорость биодеградации магниевых сплавов in vitro.
Материалы и методы. Исследовали биодеградацию магниевых сплавов Mg-Zn-Ca и WE43 (Mg-Y-Nd-Zr) в гомогенизированном (исходном) и упрочненном посредством механической обработки равноканальным угловым прессованием (РКУП) состояниях. Образцы инкубировали в модельной системе на основе стандартизированной фетальной телячьей сыворотки (ФТС) в статическом и динамическом режимах. Морфологию поверхности сплавов изучали с помощью световой микроскопии и компьютерной томографии. Биодеградацию оценивали посредством расчета потери массы за определенный период времени инкубации. Стимуляцию клеточной адгезии и колонизации определяли по клеточному индексу (CI) на анализаторе xCELLigence RTCA Systems (ACEA Biosciences, Inc., США) в процессе инкубации сплавов на основе WE43 и клеток линии HEK 293.
Результаты. Упрочнение магниевых сплавов Mg-Zn-Ca и WE43 методом РКУП и, как следствие, изменение их структуры приводит к ускорению процесса биодеградации примерно в 8 раз. Во время инкубации в ФТС в различных режимах обнаружено, что инкубация сплавов в токе жидкости приводила к ускорению процесса биодеградации более чем в 2 раза. Процесс биодеградации сопровождался локальной коррозией, но деградация имела краевой характер, т.е. была преимущественно сосредоточена по краям образцов, стимулируя клеточную адгезию и колонизацию. Такой характер деградации, как правило, не приводит к анизотропии прочностных свойств сплавов, что важно для материалов медицинского назначения. Поверхностная деструкция сплавов без изменений их рентгеновской плотности по толщине образцов подтверждена данными компьютерной томографии.
Заключение. Исследование скорости и характера биодеградации магниевых сплавов Mg-Zn-Ca и WE43 показало, что эти материалы в обоих структурных состояниях могут быть использованы для создания костных имплантатов и крепежных элементов.
- Han H.S., Loffredo S., Jun I., Edwards J., Kim Y.C., Seok H.K., Witte F., Mantovani D., Glyn-Jones S. Current status and outlook on the clinical translation of biodegradable metals. Mater Today 2019; 23: 57–71, https://doi.org/10.1016/j.mattod.2018.05.018.
- Li X., Liu X., Wu S., Yeung K.W.K., Zheng Y., Chu P.K. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater 2016; 45: 2–30, https://doi.org/10.1016/j.actbio.2016.09.005.
- Kiselevsky М.V., Anisimova N.Yu., Polotsky B.Е., Martynenko N.S., Lukyanova Е.А., Sitdikova S.М., Dobatkin S.V., Estrin Yu.Z. Biodegradable magnesium alloys as promising materials for medical applications (review). Sovremennye tehnologii v medicine 2019; 11(3): 146–157, https://doi.org/10.17691/stm2019.11.3.18.
- Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Mater Sci Eng R Rep 2014; 77: 1–34, https://doi.org/10.1016/j.mser.2014.01.001.
- Фигурска М. Структура компактной костной ткани. Российский журнал биомеханики 2007; 11(3): 28–38.
- Li G., Yang H., Zheng Y., Chen X.H., Yang J.A., Zhu D., Ruan L., Takashima K. challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. Acta Biomater 2019; 97: 23–45, https://doi.org/10.1016/j.actbio.2019.07.038.
- Chu P.W., Mire E.L., Marquis E.A. Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution. Corros Sci 2017; 128: 253–264, https://doi.org/10.1016/j.corsci.2017.09.022.
- Zhang F., Ma A., Song D., Jiang J., Lu F., Zhang L., Yang D., Chen J. Improving in-vitro biocorrosion resistance of Mg-Zn-Mn-Ca alloy in Hank’s solution through addition of cerium. J Rare Earth 2015; 33(1): 93–101, https://doi.org/10.1016/S1002-0721(14)60388-4.
- Kulyasova O.B., Islamgaliev R.K., Parfenov E.V., Zheng Y.F., Valiev R.Z. Microstructure, mechanical and corrosion properties of ultrafine-grained Mg-2%Sr alloy. IOP Conf Ser Mater Sci Eng 2018; 380: 012014, https://doi.org/10.1088/1757-899X/380/1/012014.
- Liu D., Yang D., Li X., Hu S. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: a review. J Mater Res Technol 2019; 8(1): 1538–1549, https://doi.org/10.1016/j.jmrt.2018.08.003.
- Linderov M., Vasilev E., Merson D., Markushev M., Vinogradov A. Corrosion fatigue of fine grain Mg-Zn-Zr and Mg-Y-Zn alloys. Metals 2018; 8(1): 20, https://doi.org/10.3390/met8010020.
- Kirkland N.T., Birbilis N., Staiger M.P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 2012; 8(3): 925–936, https://doi.org/10.1016/j.actbio.2011.11.014.
- Cao F., Song G.L., Atrens A. Corrosion and passivation of magnesium alloys. Corros Sci 2016; 111: 835–845, https://doi.org/10.1016/j.corsci.2016.05.041.
- Song G., Atrens A., StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In: Magnesium technology. Hryn J.N. (editor). Warrendale, PA: TMS; 2001; p. 254–262, https://doi.org/10.1002/9781118805497.ch44.
- Song Y., Shan D., Han E.H. Pitting corrosion of a rare earth Mg alloy GW93. J Mater Sci Technol 2017; 33(9): 954–960, https://doi.org/10.1016/j.jmst.2017.01.014.
- Wei L., Li J., Zhang Y., Lai H. Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg-xZn-0.2Ca-0.1Mn alloys. Mater Chem Phys 2020; 241: 122441, https://doi.org/10.1016/j.matchemphys.2019.122441.
- Moussa M.E., Mohamed H.I., Waly M.A., Al-Ganainy G.S., Ahmed A.B., Talaat M.S. Comparison study of Sn and Bi addition on microstructure and bio-degradation rate of as-cast Mg-4wt% Zn alloy without and with Ca-P coating. J Alloy Compd 2019; 792: 1239–1247, https://doi.org/10.1016/j.jallcom.2019.03.363.
- Martynenko N.S., Lukyanova E.A., Serebryany V.N., Gorshenkov M.V., Shchetinin I.V., Raab G.I., Dobatkin S.V., Estrin Y. Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing. Mater Sci Eng A 2018; 712: 625–629, https://doi.org/10.1016/j.msea.2017.12.026.
- Martynenko N., Lukyanova E., Serebryany V., Prosvirnin D., Terentiev V., Raab G., Dobatkin S., Estrin Y. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy. Mater Lett 2019; 238: 218–221, https://doi.org/10.1016/j.matlet.2018.12.024.
- Tie D., Feyerabend F., Hort N., Hoeche D., Kainer K.U., Willumeit R., Mueller W.D. In vitro mechanical and corrosion properties of biodegradable Mg–Ag alloys. Mater Corros 2014; 65(6): 569–576, https://doi.org/10.1002/maco.201206903.
- Marco I., Feyerabend F., Willumeit-Römer R., Van der Biest O. Degradation testing of Mg alloys in Dulbecco’s modified eagle medium: influence of medium sterilization. Mater Sci Eng C 2016; 62: 68–78, https://doi.org/10.1016/j.msec.2016.01.039.
- Thomas S., Medhekar N.V., Frankel G.S., Birbilis N. Corrosion mechanism and hydrogen evolution on Mg. Curr Opin Solid State Mater Sci 2015;19(2): 85–94, https://doi.org/10.1016/j.cossms.2014.09.005.