Сегодня: 24.01.2025
RU / EN
Последнее обновление: 27.12.2024
Эндокринные дисрапторы — новый этиологический фактор заболеваний костной ткани (обзор)

Эндокринные дисрапторы — новый этиологический фактор заболеваний костной ткани (обзор)

Н.В. Яглова, В.В. Яглов
Ключевые слова: эндокринный дисраптор; костная ткань; регенерация костной ткани; остеобласты; остеокласты; гормоны.
2021, том 13, номер 2, стр. 84.

Полный текст статьи

html pdf
3165
2811

В настоящее время болезни костей и суставов занимают третье место после сердечно-сосудистых и онкологических патологий, что диктует необходимость поиска новых этиологических факторов и патогенетических механизмов этих заболеваний. Накапливающаяся информация показывает связь между нарушениями развития и регенерации костной ткани и воздействием эндокринных дисрапторов.

Эндокринные дисрапторы химические вещества, в основном антропогенного происхождения, способные оказывать влияние на функционирование эндокринной системы и нарушать морфогенез органов и физиологические функции. Развитие и регенерация костных тканей имеют сложную гормональную регуляцию, а следовательно, клетки костной ткани остеобласты и остеокласты могут рассматриваться как потенциальные мишени для эндокринных дисрапторов. Установлено, что эндокринные дисрапторы способны нарушать метаболизм кальция, что также вносит вклад в развитие патологий опорно-двигательного аппарата.

Приведены данные о гистогенезе костной ткани и регенерации, об обмене кальция, а также о гормональной регуляции процессов роста и ремоделирования костей. Обобщены появившиеся в последние годы сведения о влиянии основных классов эндокринных дисрапторов (диэтилстильбэстрола, хлорорганических пестицидов, алкилфенолов, бисфенола А, диоксинов, полихлорированных дифенилов и эфиров фталевой кислоты) на развитие и ремоделирование костных тканей и метаболизм кальция. Рассмотрены установленные физиологические и молекулярные механизмы их действия.

  1. Addai D., Zarkos J., Toloekova A. The bone hormones and their potential effects on glucose and energy metabolism. Endocr Regul 2019; 53(4): 268–273, https://doi.org/10.2478/enr-2019-0027.
  2. Al-Suhaimi E.A., Al-Jafary M.A. Endocrine roles of vitamin K-dependent-osteocalcin in the relation between bone metabolism and metabolic disorders. Rev Endocr Metab Disord 2020; 21(1): 117–125, https://doi.org/10.1007/s11154-019-09517-9.
  3. Яглов В.В., Яглова Н.В. Клеточная теория — мето­дология изучения биологии клетки. Клиническая и экспериментальная морфология 2016; 3: 4–8.
  4. Diamanti-Kandarakis E., Bourguignon J.P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev 2009; 30(4): 293–342, https://doi.org/10.1210/er.2009-0002.
  5. WHO/UNEP. State of the science of endocrine disrupting chemicals — 2012. An assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme and World Health Organization. 2012; p. 289. URL: https://www.who.int/ceh/publications/endocrine/en/.
  6. Zoeller R.T., Brown T.R., Doan L.L., Gore A.C., Skakkebaek N.E., Soto A.M., Woodruff T.J., Vom Saal F.S. Endocrine-disrupting chemicals and public health protection: а statement of principles from The Endocrine Society. Endocrinology 2012; 153(9): 4097–4110, https://doi.org/10.1210/en.2012-1422.
  7. Яглова Н.В., Яглов В.В. Эндокринные дизрапторы — новое направление исследований в эндокринологии. Вест­ник Российской академии медицинских наук 2012; 67(3): 56–61, https://doi.org/10.15690/vramn.v67i3.186.
  8. Agas D., Sabbieti M.G., Marchtti L. Endocrine disruptors and bone metabolism. Arch Toxicol 2013; 87(4): 735–751, https://doi.org/10.1007/s00204-012-0988-y.
  9. Alavian-Ghavanini A., Rüegg J. Understanding epigenetic effects of endocrine disrupting chemicals: from mechanisms to novel test methods. Basic Clin Pharmacol Toxicol 2018; 122(1): 38–45, https://doi.org/10.1111/bcpt.12878.
  10. Skinner M.K., Ben Maamar M., Sadler-Riggleman I., Beck D., Nilsson E., McBirney M., Klukovich R., Xie Y., Tang C., Yan W. Alterations in sperm DNA methylation, non‑coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018; 11(1): 8, https://doi.org/10.1186/s13072-018-0178-0.
  11. Yaglova N.V., Obernikhin S.S., Tsomartova D.A., Nazimova S.V., Yaglov V.V. Expression of transcription factor PRH/Hhex in adrenal chromaffin cells in the postnatal development and its role in the regulation of proliferative processes. Byulleten eksperimentalnoi biologii i meditsiny 2018; 165(4): 508–511, https://doi.org/10.1007/s10517-018-4205-8.
  12. Yaglova N.V., Tsomartova D.A., Obernikhin S.S., Nazimova S.V. The role of the canonical Wnt-signaling pathway in morphogenesis and regeneration of the adrenal cortex in rats exposed to the endocrine disruptor dichlorodiphenyltrichloroethane during prenatal and postnatal development. Biol Bull 2019; 46(1): 74–81, https://doi.org/10.1134/s1062359018060122.
  13. Kanis J.A., Odén A., McCloskey E.V., Johansson H., Wahl D.A., Cooper C.; IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 2012; 23(9): 2239–2256, https://doi.org/10.1007/s00198-012-1964-3.
  14. Lane N.E., Shidara K., Wise B.L. Osteoarthritis year in review 2016: clinical. Osteoarthritis Cartilage 2017; 25(2): 209–215, https://doi.org/10.1016/j.joca.2016.09.025.
  15. Quevedo I., Ormeño J., Weissglas B., Opazo C. Epidemiology and direct medical cost of osteoporotic hip fracture in Chile. J Osteoporos 2020; 2020: 5360467, https://doi.org/10.1155/2020/5360467.
  16. Vina E.R., Kwoh C.K. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol 2018; 30(2): 160–167, https://doi.org/10.1097/bor.0000000000000479.
  17. Балабанова Р.М., Дубинина Т.В. Динамика пятилетней заболеваемости болезнями костно-мышечной системы и их распространенности среди взрослого населения России за 2013–2017 гг. Современная ревматология 2019; 13(4): 11–17, https://doi.org/10.14412/1996-7012-2019-4-11-17.
  18. Ахполова В.О., Брин В.Б. Обмен кальция и его гормональная регуляция. Журнал фундаментальной медицины и биологии 2017; 2: 38–46.
  19. Карпова Н.Ю., Рашид М.А., Казакова Т.В., Яд­ров М.Е. Метаболизм кальция и костный гомеостаз. Фар­ма­тека 2016; S3: 16–21.
  20. Шалина М.А., Ярмолинская М.И., Абашова Е.И. Влия­ние гормональной терапии на костную ткань: мифы и реальность. Журнал акушерства и женских болезней 2018; 67(3): 83–94, https://doi.org/10.17816/jowd67383-94.
  21. Prior J.C. Progesterone for the prevention and treatment of osteoporosis in women. J Climacteric 2018; 21(4): 366–374, https://doi.org/10.1080/13697137.2018.1467400.
  22. Kranz E., Trimpou T., Landin-Wilhelmsen K. Effect of growth hormone treatment on fractures and quality of life in postmenopausal osteoporosis: a 10-year-follow-up study. J Clin Endocrinol Metab 2015; 100(9): 3251–3259, https://doi.org/10.1210/jc.2015-1757.
  23. Li K., Wang X.F., Li D.Y., Chen Y.C., Zhao L.J., Liu X.G., Guo Y.F., Shen Y.F., Shen J., Lin X., Deng J., Zhou R., Deng H.W. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging 2018; 13: 2443–2452, https://doi.org/10.2147/cia.s157523.
  24. Guntur A.R., Rosen C.J. Bone as an endocrine organ. Endocr Pract 2012; 18(5): 758–762, https://doi.org/10.4158/ep12141.ra.
  25. Karsenty G., Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 2014; 382(1): 521–526, https://doi.org/10.1016/j.mce.2013.10.008.
  26. Zoch M.L., Clemens T.L., Riddle R.C. New insights into the biology of osteocalcin. Bone 2016; 82: 42–49, https://doi.org/10.1016/j.bone.2015.05.046.
  27. Kioumourtzoglou M.A., Coull B.A., O’Reilly É.J., Ascherio A., Weisskopf M.G. Association of exposure to diethylstilbestrol during pregnancy with multigenerational neurodevelopmental deficits. JAMA Pediatr 2018; 172(7): 670–677, https://doi.org/10.1001/jamapediatrics.2018.0727.
  28. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Pharmaceuticals. Volume 100 A. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 2012; 100(Pt A): 1–401.
  29. Tournaire M., Epelboin S., Devouche E., Viot G., Le Bidois J., Cabau A., Dunbavand A., Levadou A. Adverse health effects in children of women exposed in utero to diethylstilbestrol (DES). Therapie 2016; 71(4): 395–404, https://doi.org/10.1016/j.therap.2016.01.006.
  30. Migliaccio S., Newbold R.R., Bullock B.C., McLachlan J.A., Korach K.S. Developmental exposure to estrogens induces persistent changes in skeletal tissue. Endocrinology 1992; 130(3): 1756–1758, https://doi.org/10.1210/endo.130.3.1537323.
  31. Pelch K.E., Carleton S.M., Phillips C.L., Nagel S.C. Developmental exposure to xenoestrogens at low doses alters femur length and tensile strength in adult mice. Biol Reprod 2012; 86(3): 69, https://doi.org/10.1095/biolreprod.111.096545.
  32. Rowas S.A., Haddad R., Gawri R., Al Ma’awi A.A., Chalifour L.E., Antoniou J., Mwale F. Effect of in utero exposure to diethylstilbestrol on lumbar and femoral bone, articular cartilage, and the intervertebral disc in male and female adult mice progeny with and without swimming exercise. Arthritis Res Ther 2012; 14(1): R17, https://doi.org/10.1186/ar3696.
  33. La Merill M.A., Vandenberg L.N., Smith M.T., Goodson W., Browne P., Patisaul H.B., Guyton K.Z., Kortenkamp A., Cogliano V.J., Woodruff T.J., Rieswijk L., Sone H., Korach K.S., Gore A.C., Zeise L., Zoeller R.T. Consensus on the key characteristic of endocrine disrupting chemicals as a basis for hazard identification. Nature Reviews Endocrinology 2020; 16: 45–57, https://doi.org/10.1038/s41574-019-0273-8.
  34. WHO recommended insecticides for indoor residual spraying against malaria vectors. WHOPES; 2015.
  35. World Health Organization. Environmental Health Criteria 241. DDT in Indoor Residual Spraying: Human Health Aspects. Geneva: World Health Organization; 2011; 300   p. URL: https://apps.who.int/iris/bitstream/handle/ 10665/44560/9789241572415_eng.pdf.
  36. World Health Organization. Pesticide residues in food — 2016 evaluations. Part II — Toxicological. Geneva: WHO and FAO; 2017. URL: https://apps.who.int/iris/bitstream/handle/ 10665/255000/9789241655323-eng.pdf.
  37. Haug L.S., Sakhi A.K., Cequier E., Casas M., Maitre L., Basagana X., Andrusaityte S., Chalkiadaki G., Chatzi L., Coen M., de Bont J., Dedele A., Ferrand J., Grazuleviciene R., Gonzalez J.R., Gutzkow K.B., Keun H., McEachan R., Meltzer H.M., Petraviciene I., Robinson O., Saulnier P.J., Slama R., Sunyer J., Urquiza J., Vafeiadi M., Wright J., Vrijheid M., Thomsen C. In-utero and childhood chemical exposome in six European mother-child cohorts. Environ Int 2018; 121(Pt 1): 751–763, https://doi.org/10.1016/j.envint.2018.09.056.
  38. Ritter R., Scheringer M., MacLeod M., Hungerbühler K. Assessment of nonoccupational exposure to DDT in the tropics and the north: relevance of uptake via inhalation from indoor residual spraying. Environ Health Perspect 2011; 119(5): 707–712, https://doi.org/10.1289/ehp.1002542.
  39. Glynn A.W., Michaëlsson K., Lind P.M., Wolk A., Aune M., Atuma S., Darnerud P.O., Mallmin H. Organochlorines and bone mineral density in Swedish men from the general population. Osteoporos Int 2000; 11(12): 1036–1042, https://doi.org/10.1007/s001980070025.
  40. Wallin E., Rylander L., Hagmar L. Exposure to persistent organochlorine compounds through fish consumption and the incidence of osteoporotic fractures. Scand J Work Environ 2004; 30(1): 30–35, https://doi.org/10.5271/sjweh.762.
  41. Yaglova N.V., Yaglov V.V. Cytophysiological changes in the follicular epithelium of the thyroid gland after long-term exposure to low doses of dichlorodiphenyltrichloroethane (DDT). Byulleten eksperimentalnoi biologii i meditsiny 2017; 162(5): 699–702, https://doi.org/10.1007/s10517-017-3691-4.
  42. Yaglova N.V., Tsomartova D.A., Yaglov V.V. Differences in production of adrenal steroid hormones in pubertal rats exposed to low doses of endocrine disruptor DDT during prenatal and postnatal development. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2018; 12(1): 80–86, https://doi.org/10.1134/s1990750818010122.
  43. El-Hefnavy T., Hernandez C., Stabile L.P. The endocrine disrupting alkylphenols and 4,4’-DDT interfere with estrogen conversion and clearance by mouse liver cytosol. Reprod Biol 2017; 17(3): 185–192, https://doi.org/10.1016/j.repbio.2017.04.003.
  44. Morales E., Gascon M., Martinez D., Casa M., Ballester F., Rodríguez-Bernal C.L., Ibarluzea J., Marina L.S., Espada M., Goñi F., Vizcaino E., Grimalt J.O., Sunyer J.; INMA Project. Associations between blood persistent organic pollutants and 25-hydroxivitemin D3 in pregnancy. Env Int 2013; 57–58: 34–41, https://doi.org/10.1016/j.envint.2013.03.011.
  45. Yang J.H., Lee Y.M., Bae S.J., Jacobs D.R. Jr., Lee D.H. Association between organochlorine pesticides and vitamin D deficiency in the U.S. population. PLoS One 2012; 7(1): e30093, https://doi.org/10.1371/journal.pone.0030093.
  46. Fossi C., Pampaloni B., Brandi M. Effect of endocrine disrupting compounds on vitamin D circulating levels. Clin Cases Miner Bone Metab 2018; 15(1): 132–137.
  47. Johns L.E., Ferguson K.K., Cantonwine D.E., McElrath T.F., Mukherjee B., Meeker J.D. Urinary BPA and phthalate metabolite concentrations and plasma vitamin D levels in pregnant women: a repeated measures analysis. Environ Health Perspect 2017; 125(8): 087026, https://doi.org/10.1289/ehp1178.
  48. Van Schoor N., Lips P. Global Overview of vitamin D status. Endocrinol Metab Clin North Am 2017: 46(4): 845–870, https://doi.org/10.1016/j.ecl.2017.07.002.
  49. Cianferotti L., Bertoldo F., Bischoff-Ferrari H.A., Bruyere O., Cooper C., Cutolo M., Kanis J.A., Kaufman J.M., Reginster J.Y., Rizzoli R., Brandi M.L. Vitamin D supplementation in the prevention and management of major chronic diseases not related to mineral homeostasis in adults: research for evidence and a scientific statement from the European Society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Endocrine 2017; 56(2): 245–261, https://doi.org/10.1007/s12020-017-1290-9.
  50. De Falco M., Forte M., Laforgia V. Estrogenic and anti-androgenic disrupting chemicals and their impact on the male reproductive system. Front Environ Sci 2015; 3, https://doi.org/10.3389/fenvs.2015.00003.
  51. Hagiwara H., Sugizaki T., Tsukamoto Y., Senoh E., Goto T., Ishihara Y. Effects of alkylphenols on bone metabolism in vivo and in vitro. Toxicol Lett 2008; 181(1): 13–18, https://doi.org/10.1016/j.toxlet.2008.06.863.
  52. Kamei S., Miyawaki J., Sakayama K., Yamamoto H., Masuno H. Perinatal and postnatal exposure to 4tert-octylphenol inhibits cortical bone growth in width at the diaphysis in female mice. Toxicology 2008; 252(1–3): 99–104, https://doi.org/10.1016/j.tox.2008.08.008.
  53. Sabbieti M.G., Agas D., Palermo F., Mosconi G., Santoni G., Amantini C., Farfariello V., Marchetti L. 4-nonylphenol triggers apoptosis and affects 17-β-estradiol receptors in calvarial osteoblasts. Toxicology 2011; 290(2–3): 334–341, https://doi.org/10.1016/j.tox.2011.10.014.
  54. Eliades T. Bisphenol A and orthodontics: an update of evidence-based measures to minimize exposure for the orthodontic team and patients. Am J Orthod Dentofacial Orthop 2017; 152(4): 435–441, https://doi.org/10.1016/j.ajodo.2017.08.004.
  55. Halimi A., Benyahia H., Bahije L., Adli H., Azeroual M.F., Zaoui F. A systematic study of the release of bisphenol A by orthodontic materials and its biological effects. Int Orthod 2016; 14(4): 399–417, https://doi.org/10.1016/j.ortho.2016.10.005.
  56. Purushothaman D., Kailasam V., Chitharanjan A.B. Bisphenol A release from orthodontic adhesives and its correlation with the degree of conversion. Am J Orthod Dentofacial Orthop 2015; 147(1): 29–36, https://doi.org/10.1016/j.ajodo.2014.09.013.
  57. Groh K.J., Backhaus T., Carney-Almroth B., Geueke B., Inostroza P.A., Lennquist A., Leslie H.A., Maffini M., Slunge D., Trasande L., Warhurst A.M., Muncke J. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ 2019; 651(Pt 2): 3253–3268, https://doi.org/10.1016/j.scitotenv.2018.10.015.
  58. European Parliament. Policy Department for Citizens’ Rights and Constitutional Affairs. Endocrine disruptors: from scientific evidence to human health protection. Petition. March 2019.
  59. Wang T., Liu B., Guan Y., Gong M., Zhang W., Pan J., Liu Y., Liang R., Yuan Y., Ye L. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac Cancer 2018; 9(3): 368–375, https://doi.org/10.1111/1759-7714.12587.
  60. Murata M., Kang J.H. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36(1): 311–327, https://doi.org/10.1016/j.biotechadv.2017.12.002.
  61. Zhang Y.F., Ren X.M., Li Y.Y., Yao X.F., Li C.H., Qin Z.F., Guo L.H. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environ Pollut 2018; 237: 1072–1079, https://doi.org/10.1016/j.envpol.2017.11.027.
  62. Lind T., Lejonklou M.H., Dunder L., Rasmusson A., Larsson S., Melhus H., Lind P.M. Low-dose developmental exposure to bisphenol A induces sex-specific effects in bone of Fischer 344 rat offspring. Environ Res 2017; 159: 61–68, https://doi.org/10.1016/j.envres.2017.07.020.
  63. Vitku J., Kolatorova L., Franekova L., Blahos J., Simkova M., Duskova M., Skodova T., Starka L. Endocrine disruptors of the bisphenol and paraben families and bone metabolism. Physiol Res 2018; 67(Suppl 3): S455–S464, https://doi.org/10.33549/physiolres.934005.
  64. Thent Z.C., Froemming G.R.A., Muid S. Bisphenol A exposure disturbs the bone metabolism: an evolving interest towards an old culprit. Life Sci 2018; 198: 1–7, https://doi.org/10.1016/j.lfs.2018.02.013.
  65. Boffetta P., Mundt K.A., Adami H.O., Cole P., Mandel J.S. TCDD and cancer: a critical review of epidemiologic studies. Crit Rev Toxicol 2011; 41(7): 622–636, https://doi.org/10.3109/10408444.2011.560141.
  66. Całkosiński I., Rosińczuk-Tonderys J., Bazan J., Dobrzyński M., Bronowicka-Szydełko A., Dzierzba K. Influence of dioxin intoxication on the human system and possibilities of limiting its negative effects on the environment and living organism. Ann Agric Environ Med 2014; 21(3): 518–524, https://doi.org/10.5604/12321966.1120594.
  67. Couture L.A., Abbott B.D., Birnbaum L.S. Critical review of the developmental toxicity and teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin: recent advances toward understanding the mechanism. Teratology 2019; 42(6): 619–627, https://doi.org/10.1002/tera.1420420606.
  68. Kolluri S.K., Jin U.H., Safe S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anticancer drug target. Arch Toxicol 2017; 91(7): 2497–2513, https://doi.org/10.1007/s00204-017-1981-2.
  69. Park S.A., Lee M.H., Na H.K., Surh Y.J. 4-hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget 2017 8(1): 164–178, https://doi.org/10.18632/oncotarget.10516.
  70. Watson A.T.D., Nordberg R.C., Loboa E.G., Kullman S.W. Evidence for aryl hydrocarbon receptor-mediated inhibition of osteoblast differentiation in human mesenchymal stem cells. Toxicol Sci 2019; 167(1): 145–156, https://doi.org/10.1093/toxsci/kfy225.
  71. Miki Y., Hata S., Ono K., Suzuki T., Ito K., Kumamoto H., Sasano H. Roles of Aryl Hydrocarbon receptor in aromatase-dependent cell proliferation in human osteoblasts. Int J Mol Sci 2017; 18(10): 2159, https://doi.org/10.3390/ijms18102159.
  72. Singh S.U., Casper R.F., Fritz P.C., Sukhu B., Ganss B., Girard B. Jr., Savouret J.F. Jr., Tenenbaum H.C. Inhibition of dioxin effects on bone formation in vitro by a newly described aryl hydrocarbon receptor antagonist, resveratrol. J Endocrinol 2000; 167(1): 183–195, https://doi.org/10.1677/joe.0.1670183.
  73. Jämsä T., Viluksela M., Tuomisto J.T., Tuomisto J., Tuukkanen J. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on bone in two rat strains with different aryl hydrocarbon receptor structures. J Bone Miner Res 2001; 16(10): 1812–1820, https://doi.org/10.1359/jbmr.2001.16.10.1812.
  74. Yun C., Katchko K.M., Schallmo M.S., Jeong S., Yun J., Chen C.H., Weiner J.A., Park C., George A., Stupp S.I., Hsu W.K., Hsu E.L. Aryl hydrocarbon receptor antagonists mitigate the effects of dioxin on critical cellular function in differentiating human osteoblast-like cells. Int J Mol Sci 2018; 19(1): 225, https://doi.org/10.3390/ijms19010225.
  75. Shlots S.B., Korkalainen M., Simanainen U., Miettinen H.M., Håkansson H., Viluksela M. In utero/lactational and adult exposures to 2,3,7,8-p-dioxin (TCDD) show differential effects on craniofacial development and growth in rats. Toxicology 2015; 337: 30–38, https://doi.org/10.1016/j.tox.2015.08.010.
  76. Street M.E., Angelini S., Bernasconi S., Burgio E., Cassio A., Catellani C., Cirillo F., Deodati A., Fabbrizi E., Fanos V., Gargano G., Grossi E., Iughetti L., Lazzeroni P., Mantovani A., Migliore L., Palanza P., Panzica G., Papini A.M., Parmigiani S., Predieri B., Sartori C., Tridenti G., Amarri S. Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: highlights from a national Italian meeting. Int J Mol Sci 2018; 19(6): 1647, https://doi.org/10.3390/ijms19061647.
  77. Boas M., Feldt-Rasmussen U., Main K.M. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 2012; 355(2): 240–248, https://doi.org/10.1016/j.mce.2011.09.005.
  78. Hartoft-Nielsen M.L., Boas M., Bliddal S., Rasmussen A.K., Main K., Feldt-Rasmussen U. Do thyroid disrupting chemicals influence foetal development during pregnancy? J Thyr Res 2011; 2011: 342189, https://doi.org/10.4061/2011/342189.
  79. Zhang L., Nichols R.G., Correll J., Murray I.A., Tanaka N., Smith P.B., Hubbard T.D., Sebastian A., Albert I., Hatzakis E., Gonzalez F.J., Perdew G.H., Patterson A.D. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 2015; 123(7): 679–688, https://doi.org/10.1289/ehp.1409055.
  80. Gore A.C., Chappell V.A., Fenton S.E., Flaws J.A., Nadal A., Prins G.S., Toppari J., Zoeller R.T. EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 2015; 36(6): E1–E150, https://doi.org/10.1210/er.2015-1010.
  81. Papalou O., Kandaraki E.A., Papadakis G., Diamanti-Kandarakis E. Endocrine disrupting chemicals: an occult mediator of metabolic disease. Front Endocrinol (Lausanne) 2019; 10: 112, https://doi.org/10.3389/fendo.2019.00112.
  82. Gao X., Li J., Wang X., Zhou J., Fan B., Li W., Liu Z. Exposure and ecological risk of phthalate esters in the Taihu Lake basin, China. Ecotoxicol Environ Saf 2019; 171: 564–570, https://doi.org/10.1016/j.ecoenv.2019.01.001.
  83. Heo H., Choi M.J., Park J., Nam T., Cho J. Antropogenic occurrence of phthalate esters in beach seawater in the southeast coast region, South Korea. Water 2020; 12: 122, https://doi.org/10.3390/w12010122.
  84. Paluselli A., Aminot Y., Galgani F., Net S., Sempéré R. Occurrence of phthalate acid esters (PAEs) in the northwestern Mediterranean sea and the Rhone River. Prog Oceanogr 2018; 163: 221–231, https://doi.org/10.1016/j.pocean.2017.06.002.
  85. Zhang B., Zhang T., Duan Y., Zhao Z., Huang X., Bai X., Xie L., He Y., Ouyang J., Yang Y., Wu Y., Sun H. Human exposure to phthalate esters associated with e-waste dismantling: exposure levels, sources, and risk assessment. Environ Int 2019; 124: 1–9, https://doi.org/10.1016/j.envint.2018.12.035.
  86. Agas D., Lacava G., Sabbieti M.G. Bone and bone marrow disruption by endocrine-active substances. J Cell Physiol 2019; 234(1): 192–213, https://doi.org/10.1002/jcp.26837.
  87. Calsolaro V., Pasqualetti G., Niccolai F., Caraccio N., Monzani F. Thyroid disrupting chemicals. Int J Mol Sci 2017; 18(12): E2583, https://doi.org/10.3390/ijms18122583.
  88. Radke E.G., Braun J.M., Meeker J.D., Cooper G.S. Phthalate exposure and male reproductive outcomes: а systematic review of the human epidemiological evidence. Environ Int 2018; 121(1): 764–793, https://doi.org/10.1016/j.envint.2018.07.029.
  89. Swan S.H., Sathyanarayana S., Barrett E.S., Janssen S., Liu F., Nguyen R.H., Redmon J.B.; TIDES Study Team. First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod 2015; 30(4): 963–972, https://doi.org/10.1093/humrep/deu363.
  90. Ferguson K.K., McElrath T.F., Meeker J.D. Environmental phthalate exposure and preterm birth. JAMA Pediatr 2014; 168(1): 61–67, https://doi.org/10.1001/jamapediatrics.2013.3699.
  91. Miodovnik A., Edwards A., Bellinger D.C., Hauser R. Developmental neurotoxicity of ortho-phthalate diesters: review of human and experimental evidence. Neurotoxicology 2014; 41: 112–122, https://doi.org/10.1016/j.neuro.2014.01.007.
  92. Sathyanarayana S., Butts S., Wang C., Barrett E., Nguyen R., Schwartz S.M., Haaland W., Swan S.H.; TIDES Team. Early prenatal phthalate exposure, sex steroid hormones, and birth outcomes. J Clin Endocrinol Metab 2017; 102(6): 1870–1878, https://doi.org/10.1210/jc.2016-3837.
  93. Wójtowicz A.K., Sitarz-Głownia A.M., Szczęsna M., Szychowski K.A. The action of di-(2-Ethylhexyl) phthalate (DEHP) in mouse cerebral cells involves an impairment in aryl hydrocarbon receptor (AhR) signaling. Neurotox Res 2019; 35(1): 183–195, https://doi.org/10.1007/s12640-018-9946-7.
  94. Naganawa T., Xiao L., Abogunde E., Sobue T., Kalajzic I., Sabbieti M., Agas D., Hurley M.M. In vivo and in vitro comparison of the effects of FGF-2 null and haplo-insufficiency on bone formation in mice. Biochem Biophys Res Commun 2006; 339(2): 490–498, https://doi.org/10.1016/j.bbrc.2005.10.215.
  95. McKee R.H., Pavkov K.L., Trimmer G.W., Keller L.H., Stump D.G. An assessment of the potential developmental and reproductive toxicity of di-isoheptyl phthalate in rodents. Reprod Toxicol 2006; 21(3): 241–252, https://doi.org/10.1016/j.reprotox.2005.09.002.
  96. Cheon K.Y., Kil K.H., Choi J.I., Kim R.Y., Kim M.R., Kim J.H., Cho H.H. Parenteral exposure to DEHP and its effect on the microstructure of bone and Wnt signaling pathway in F2 female mice. Biochip J 2016; 10: 233–240, https://doi.org/10.1007/s13206-016-0309-2.
  97. Chiu C.Y., Sun S.C., Chiang C.K., Wang C.C., Chan D.C., Chen H.J., Liu S.H., Yang R.S. Plasticizer di(2-ethylhexyl) phthalate interferes with osteoblastogenesis and adipogenesis in a mouse model. J Orthop Res 2018; 36(4): 1124–1134, https://doi.org/10.1002/jor.23740.
  98. DeFlorio-Barker S.A., Turyk M.E. Associations between bone mineral density and urinary phthalate metabolites among post-menopausal women: a cross-sectional study of NHANES data 2005–2010. Int J Environ Health Res 2016; 26(3): 326–345, https://doi.org/10.1080/09603123.2015.1111312.
  99. Choi J.I., Cho H.H. Effects of di(2-ethylhexyl)phthalate on bone metabolism in ovariectomized mice. J Bone Metab 2019; 26(3): 169–177, https://doi.org/10.11005/jbm.2019.26.3.169.
  100. Johns L.E., Ferguson K.K., Meeker J.D. Relationships between urinary phthalate metabolite and bisphenol A concentrations and vitamin D levels in U.S. adults: National Health and Nutrition Examination Survey (NHANES), 2005–2010. J Clin Endocrinol Metab 2016; 101(11): 4062–4069, https://doi.org/10.1210/jc.2016-2134.
  101. Sweeney M.R., O’Leary K.G., Jeney Z., Braunlin M.C., Gibb H.J. Systematic review and quality ranking of studies of two phthalate metabolites and anogenital distance, bone health, inflammation, and oxidative stress. Crit Rev Toxicol 2019; 49(4): 281–301, https://doi.org/10.1080/10408444.2019.1605332.
Yaglova N.V., Yaglov V.V. Endocrine Disruptors as a New Etiologic Factor of Bone Tissue Diseases (Review). Sovremennye tehnologii v medicine 2021; 13(2): 84, https://doi.org/10.17691/stm2021.13.2.10


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank