Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Латеральный косой (препсоас) доступ при выполнении поясничного спондилодеза (обзор)

Латеральный косой (препсоас) доступ при выполнении поясничного спондилодеза (обзор)

А.Я. Алейник, С.Г. Млявых, S. Qureshi
Ключевые слова: поясничный спондилодез; передний поясничный спондилодез; переднебоковой поясничный спондилодез; ретроперитонеальный доступ; oblique lumbar interbody fusion; OLIF; anterior to psoas lumbar interbody fusion; ATP.
2021, том 13, номер 5, стр. 70.

Полный текст статьи

html pdf
1734
1521

Поясничный спондилодез — одна из самых частых операций в спинальной хирургии. Для ее выполнения в настоящее время все чаще используется переднебоковой (препсоас) доступ (oblique lumbar interbody fusion, OLIF), сочетающий в себе высокую эффективность и безопасность для пациента. Однако информации о клинических и рентгенологических результатах применения данной методики пока недостаточно.

Цель исследования — проанализировать безопасность и эффективность методики OLIF при лечении широкого спектра патологий поясничного отдела позвоночника по данным литературных источников.

Материалы и методы. Проведен анализ литературы по теме результативности методики OLIF с использованием электронных баз данных Ovid Medline, PubMed, eLIBRARY.RU. Поиск осуществляли по ключевым словам Oblique Lumbar Interbody Fusion, OLIF, Anterior to Psoas Lumbar Interbody Fusion, ATP.

Результаты. В окончательный анализ включено 17 источников, в которых проанализировано лечение 2900 пациентов, отмечено 403 осложнения (13,9%). При этом частота тяжелых стойких осложнений составила менее 1%. На основании полученных данных проведено сопоставление клинических и рентгенологических результатов OLIF с аналогичными показателями при использовании других вариантов поясничного спондилодеза.

Заключение. OLIF является эффективным, универсальным и минимально травматичным вариантом поясничного спондилодеза с относительно небольшим количеством осложнений, что дает ему преимущество по сравнению с другими ретроперитонеальными доступами. Тем не менее техника OLIF не позволяет полностью избежать осложнений, связанных с вентральным доступом, и не во всех случаях может обеспечить адекватную декомпрессию позвоночного канала. Роль вентрального доступа в хирургии деформаций позвоночника также остается ограниченной, адекватная коррекция деформации в большинстве случаев возможна лишь в сочетании с дорсальным доступами.

  1. Hodgson A.R., Stock F.E., Fang H.S., Ong G.B. Anterior spinal fusion. The operative approach and pathological findings in 412 patients with Pott’s disease of the spine. Br J Surg 1960; 48: 172–188, https://doi.org/10.1002/bjs.18004820819.
  2. Briggs H., Milligan P.R. Chip fusion of the low back following exploration of the spinal canal. J Bone Joint Surg Am 1944; 26(1): 125–130.
  3. Harms J., Rolinger H. A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion. Z Orthop Ihre Grenzgeb 1982; 120(3): 343–347, https://doi.org/10.1055/s-2008-1051624.
  4. Lee J.H., Jeon D.W., Lee S.J., Chang B.S., Lee C.K. Fusion rates and subsidence of morselized local bone grafted in titanium cages in posterior lumbar interbody fusion using quantitative three-dimensional computed tomography scans. Spine (Phila Pa 1976) 2010; 35(15): 1460–1465, https://doi.org/10.1097/brs.0b013e3181c4baf5.
  5. Formica M., Berjano P., Cavagnaro L., Zanirato A., Piazzolla A., Formica C. Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 2014; 23 (Suppl 6): 684–692, https://doi.org/10.1007/s00586-014-3545-y.
  6. Lykissas M.G., Aichmair A., Hughes A.P., Sama A.A., Lebl D.R., Taher F., Du J.Y., Cammisa F.P., Girardi F.P. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J 2014; 14(5): 749–758, https://doi.org/10.1016/j.spinee.2013.06.066.
  7. Kotwal S., Kawaguchi S., Lebl D., Hughes A., Huang R., Sama A., Cammisa F., Girardi F. Minimally invasive lateral lumbar interbody fusion: clinical and radiographic outcome at a minimum 2-year follow-up. J Spinal Disord Tech 2015; 28(4): 119–125, https://doi.org/10.1097/bsd.0b013e3182706ce7.
  8. Moller D.J., Slimack N.P., Acosta F.L. Jr., Koski T.R., Fessler R.G., Liu J.C. Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 2011; 31(4): E4, https://doi.org/10.3171/2011.7.focus11137.
  9. Tormenti M.J., Maserati M.B., Bonfield C.M., Okonkwo D.O., Kanter A.S. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 2010; 28(3): E7, https://doi.org/10.3171/2010.1.focus09263.
  10. Mayer H.M. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 1997; 22(6): 691–700, https://doi.org/10.1097/00007632-199703150-00023.
  11. Silvestre C., Mac-Thiong J.M., Hilmi R., Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 2012; 6(2): 89–97, https://doi.org/10.4184/asj.2012.6.2.89.
  12. Davis T.T., Hynes R.A., Fung D.A., Spann S.W., MacMillan M., Kwon B., Liu J., Acosta F., Drochner T.E. Retroperitoneal oblique corridor to the L2–S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine 2014; 21(5): 785–793, https://doi.org/10.3171/2014.7.spine13564.
  13. Molinares D.M., Davis T.T., Fung D.A. Retroperitoneal oblique corridor to the L2–S1 intervertebral discs: an MRI study. J Neurosurg Spine 2016; 24(2): 248–255, https://doi.org/10.3171/2015.3.spine13976.
  14. Kanemura T., Satake K., Nakashima H., Segi N., Ouchida J., Yamaguchi H., Imagama S. Understanding retroperitoneal anatomy for lateral approach spine surgery. Spine Surg Relat Res 2017; 1(3): 107–120, https://doi.org/10.22603/ssrr.1.2017-0008.
  15. Patel N.P., Birch B.D., Dement S.E., Elbert G.A. The mini-open anterolateral approach for degenerative thoracolumbar disease. Clin Neurol Neurosurg 2010; 112(10): 853–857, https://doi.org/10.1016/j.clineuro.2010.07.008.
  16. Ohtori S., Mannoji C., Orita S., Yamauchi K., Eguchi Y., Ochiai N., Kishida S., Kuniyoshi K., Aoki Y., Nakamura J., Ishikawa T., Miyagi M., Kamoda H., Suzuki M., Kubota G., Sakuma Y., Oikawa Y., Inage K., Sainoh T., Sato J., Shiga Y., Abe K., Fujimoto K., Kanamoto H., Toyone T., Inoue G., Takahashi K. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J 2015; 9(4): 565–572, https://doi.org/10.4184/asj.2015.9.4.565.
  17. Fujibayashi S., Hynes R.A., Otsuki B., Kimura H., Takemoto M., Matsuda S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 2015; 40(3): E175–E182, https://doi.org/10.1097/brs.0000000000000703.
  18. Mehren C., Mayer H.M., Zandanell C., Siepe C.J., Korge A. The oblique anterolateral approach to the lumbar spine provides access to the lumbar spine with few early complications. Clin Orthop Relat Res 2016; 474(9): 2020–2027, https://doi.org/10.1007/s11999-016-4883-3.
  19. Abe K., Orita S., Mannoji C., Motegi H., Aramomi M., Ishikawa T., Kotani T., Akazawa T., Morinaga T., Fujiyoshi T., Hasue F., Yamagata M., Hashimoto M., Yamauchi T., Eguchi Y., Suzuki M., Hanaoka E., Inage K., Sato J., Fujimoto K., Shiga Y., Kanamoto H., Yamauchi K., Nakamura J., Suzuki T., Hynes R.A., Aoki Y., Takahashi K., Ohtori S. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976) 2017; 42(1): 55–62, https://doi.org/10.1097/brs.0000000000001650.
  20. Molloy S., Butler J.S., Benton A., Malhotra K., Selvadurai S., Agu O. A new extensile anterolateral retroperitoneal approach for lumbar interbody fusion from L1 to S1: a prospective series with clinical outcomes. Spine J 2016; 16(6): 786–791, https://doi.org/10.1016/j.spinee.2016.03.044.
  21. Gragnaniello C., Seex K. Anterior to psoas (ATP) fusion of the lumbar spine: evolution of a technique facilitated by changes in equipment. J Spine Surg 2016; 2(4): 256–265, https://doi.org/10.21037/jss.2016.11.02.
  22. Woods K.R.M., Billys J.B., Hynes R.A. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J 2017; 17(4): 545–553, https://doi.org/10.1016/j.spinee.2016.10.026.
  23. Sato J., Ohtori S., Orita S., Yamauchi K., Eguchi Y., Ochiai N., Kuniyoshi K., Aoki Y., Nakamura J., Miyagi M., Suzuki M., Kubota G., Inage K., Sainoh T., Fujimoto K., Shiga Y., Abe K., Kanamoto H., Inoue G., Takahashi K. Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. Eur Spine J 2017; 26(3): 671–678, https://doi.org/10.1007/s00586-015-4170-0.
  24. Lin G.X., Akbary K., Kotheeranurak V., Quillo-Olvera J., Jo H.J., Yang X.W., Mahatthanatrakul A., Kim J.S. Clinical and radiologic outcomes of direct versus indirect decompression with lumbar interbody fusion: a matched-pair comparison analysis. World Neurosurg 2018; 119: e898–e909, https://doi.org/10.1016/j.wneu.2018.08.003.
  25. Zeng Z.Y., Xu Z.W., He D.W., Zhao X., Ma W.H., Ni W.F., Song Y.X., Zhang J.Q., Yu W., Fang X.Q., Zhou Z.J., Xu N.J., Huang W.J., Hu Z.C., Wu A.L., Ji J.F., Han J.F., Fan S.W., Zhao F.D., Jin H., Pei F., Fan S.Y., Sui D.X. Complications and prevention strategies of oblique lateral interbody fusion technique. Orthop Surg 2018; 10(2): 98–106, https://doi.org/10.1111/os.12380.
  26. Miscusi M., Ramieri A., Forcato S., Giuffre M., Trungu S., Cimatti M., Pesce A., Familiari P., Piazza A., Carnevali C., Costanzo G., Raco A. Comparison of pure lateral and oblique lateral inter-body fusion for treatment of lumbar degenerative disk disease: a multicentric cohort study. Eur Spine J 2018; 27(Suppl 2): 222–228, https://doi.org/10.1007/s00586-018-5596-y.
  27. Jin C., Jaiswal M.S., Jeun S.S., Ryu K.S., Hur J.W., Kim J.S. Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65 years of age. J Orthop Surg Res 2018; 13(1): 38, https://doi.org/10.1186/s13018-018-0740-2.
  28. Tannoury T., Kempegowda H., Haddadi K., Tannoury C. Complications associated with minimally invasive anterior to the psoas (ATP) fusion of the lumbosacral spine. Spine (Phila Pa 1976) 2019; 44(19): E1122–E1129, https://doi.org/10.1097/brs.0000000000003071.
  29. Chang S.Y., Nam Y., Lee J., Chang B.S., Lee C.K., Kim H. Impact of preoperative diagnosis on clinical outcomes of oblique lateral interbody fusion for lumbar degenerative disease in a single-institution prospective cohort. Orthop Surg 2019; 11(1): 66–74, https://doi.org/10.1111/os.12419.
  30. Beng T.B., Kotani Y., Sia U., Gonchar I. Effect of indirect neural decompression with oblique lateral interbody fusion was influenced by preoperative lumbar lordosis in adult spinal deformity surgery. Asian Spine J 2019; 13(5): 809–814, https://doi.org/10.31616/asj.2018.0283.
  31. Joseph J.R., Smith B.W., La Marca F., Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 2015; 39(4): E4, https://doi.org/10.3171/2015.7.focus15278.
  32. Bateman D.K., Millhouse P.W., Shahi N., Kadam A.B., Maltenfort M.G., Koerner J.D., Vaccaro A.R. Anterior lumbar spine surgery: a systematic review and meta-analysis of associated complications. Spine J 2015; 15(5): 1118–1132, https://doi.org/10.1016/j.spinee.2015.02.040.
  33. Fantini G.A., Pappou I.P., Girardi F.P., Sandhu H.S., Cammisa F.P. Jr. Major vascular injury during anterior lumbar spinal surgery: incidence, risk factors, and management. Spine (Phila Pa 1976) 2007; 32(24): 2751–2758, https://doi.org/10.1097/brs.0b013e31815a996e.
  34. Quraishi N.A., Konig M., Booker S.J., Shafafy M., Boszczyk B.M., Grevitt M.P., Mehdian H., Webb J.K. Access related complications in anterior lumbar surgery performed by spinal surgeons. Eur Spine J 2013; 22(Suppl 1): 16–20, https://doi.org/10.1007/s00586-012-2616-1.
  35. Sasso R.C., Kenneth Burkus J., LeHuec J.C. Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. Spine (Phila Pa 1976) 2003; 28(10): 1023–1026, https://doi.org/10.1097/01.brs.0000062965.47779.eb.
  36. Yoon S.G., Kim M.S., Kwon S.C., Lyo I.U., Sim H.B. Delayed ureter stricture and kidney atrophy after oblique lumbar interbody fusion. World Neurosurg 2020; 134: 137–140, https://doi.org/10.1016/j.wneu.2019.10.171.
  37. Fineberg S.J., Nandyala S.V., Kurd M.F., Marquez-Lara A., Noureldin M., Sankaranarayanan S., Patel A.A., Oglesby M., Singh K. Incidence and risk factors for postoperative ileus following anterior, posterior, and circumferential lumbar fusion. Spine J 2014; 14(8): 1680–1685, https://doi.org/10.1016/j.spinee.2013.10.015.
  38. Cahill K.S., Martinez J.L., Wang M.Y., Vanni S., Levi A.D. Motor nerve injuries following the minimally invasive lateral transpsoas approach. J Neurosurg Spine 2012; 17(3): 227–231, https://doi.org/10.3171/2012.5.spine1288.
  39. Zhang S.F., Zhang L., Feng X.M., Yang H.L. Incidence and risk factors for postoperative shoulder imbalance in scoliosis: a systematic review and meta-analysis. Eur Spine J 2018; 27(2): 358–369, https://doi.org/10.1007/s00586-017-5289-y.
  40. Hu W., Tang J., Wu X., Zhang L., Ke B. Minimally invasive versus open transforaminal lumbar fusion: a systematic review of complications. Int Orthop 2016; 40(9): 1883–1890, https://doi.org/10.1007/s00264-016-3153-z.
  41. Chachan S., Bae J., Lee S.H., Suk J.W., Shin S.H. Microscopic anterior neural decompression combined with oblique lumbar interbody fusion — a technical note. World Neurosurg 2019; 121: 37–43, https://doi.org/10.1016/j.wneu.2018.09.146.
  42. Macki M., Anand S.K., Surapaneni A., Park P., Chang V. Subsidence rates after lateral lumbar interbody fusion: a systematic review. World Neurosurg 2018; 122: 599–606, https://doi.org/10.1016/j.wneu.2018.11.121.
  43. Zhou Q.S., Chen X., Xu L., Li S., Du C.Z., Sun X., Wang B., Zhu Z.Z., Qiu Y. Does vertebral end plate morphology affect cage subsidence after transforaminal lumbar interbody fusion? World Neurosurg 2019; 130: e694–e701, https://doi.org/10.1016/j.wneu.2019.06.195.
  44. Palepu V., Helgeson M., Molyneaux-Francis M., Nagaraja S. The effects of bone microstructure on subsidence risk for ALIF, LLIF, PLIF, and TLIF spine cages. J Biomech Eng 2019; 141(3): 031002, https://doi.org/10.1115/1.4042181.
  45. Satake K., Kanemura T., Yamaguchi H., Segi N., Ouchida J. Predisposing factors for intraoperative endplate injury of extreme lateral interbody fusion. Asian Spine J 2016; 10(5): 907–914, https://doi.org/10.4184/asj.2016.10.5.907.
  46. Rao P.J., Phan K., Giang G., Maharaj M.M., Phan S., Mobbs R.J. Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. J Spine Surg 2017; 3(2): 168–175, https://doi.org/10.21037/jss.2017.05.03.
  47. Wang K., Zhang C., Cheng C., Jian F., Wu H. Radiographic and clinical outcomes following combined oblique lumbar interbody fusion and lateral instrumentation for the treatment of degenerative spine deformity: a preliminary retrospective study. Biomed Res Int 2019; 2019: 12–18, https://doi.org/10.1155/2019/5672162.
  48. Zhu G., Hao Y., Yu L., Cai Y., Yang X. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease: a STROBE-compliant study. Medicine (Baltimore) 2018; 97(40): e12680, https://doi.org/10.1097/md.0000000000012680.
  49. Lee S.H., Choi W.G., Lim S.R., Kang H.Y., Shin S.W. Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis. Spine J 2004; 4(6): 644–649, https://doi.org/10.1016/j.spinee.2004.04.012.
  50. Li H.M., Zhang R.J., Shen C.L. Radiographic and clinical outcomes of oblique lateral interbody fusion versus minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar disease. World Neurosurg 2019; 122: e627–e638, https://doi.org/10.1016/j.wneu.2018.10.115.
  51. Liu C., Wang J. Learning curve of minimally invasive surgery oblique lumbar interbody fusion for degenerative lumbar diseases. World Neurosurg 2018; 120: e88–e93, https://doi.org/10.1016/j.wneu.2018.07.167.
  52. Phan K., Lackey A., Chang N., Ho Y.T., Abi-Hanna D., Kerferd J., Maharaj M.M., Parker R.M., Malham G.M., Mobbs R.J. Anterior lumbar interbody fusion (ALIF) as an option for recurrent disc herniations: a systematic review and meta-analysis. J Spine Surg 2017; 3(4): 587–595, https://doi.org/10.21037/jss.2017.11.04.
  53. Cho M.S., Seo E.M. Efficacy and radiographic analysis of oblique lumbar interbody fusion in treating lumbar degenerative spondylolisthesis with sagittal imbalance. Neurosurg Rev 2021; 44(4): 2181–2189, https://doi.org/10.1007/s10143-020-01390-4.
  54. Lee Y.S., Kim Y.B., Park S.W., Chung C. Comparison of transforaminal lumbar interbody fusion with direct lumbar interbody fusion: clinical and radiological results. J Korean Neurosurg Soc 2014; 56(6): 469–474, https://doi.org/10.3340/jkns.2014.56.6.469.
  55. Lang G., Perrech M., Navarro-Ramirez R., Hussain I., Pennicooke B., Maryam F., Avila M.J., Hartl R. Potential and limitations of neural decompression in extreme lateral interbody fusion — a systematic review. World Neurosurg 2017; 101: 99–113, https://doi.org/10.1016/j.wneu.2017.01.080.
  56. Quillo-Olvera J., Lin G.X., Jo H.J., Kim J.S. Complications on minimally invasive oblique lumbar interbody fusion at L2–L5 levels: a review of the literature and surgical strategies. Ann Transl Med 2018; 6(6): 101, https://doi.org/10.21037/atm.2018.01.22.
  57. Nomura H., Yamashita A., Watanabe T., Shirasawa K. Quantitative analysis of indirect decompression in extreme lateral interbody fusion and posterior spinal fusion with a percutaneous pedicle screw system for lumbar spinal stenosis. J Spine Surg 2019; 5(2): 266–272, https://doi.org/10.21037/jss.2019.06.03.
  58. Park S.J., Lee C.S., Chung S.S., Kang S.S., Park H.J., Kim S.H. The ideal cage position for achieving both indirect neural decompression and segmental angle restoration in lateral lumbar interbody fusion (LLIF). Clin Spine Surg 2017; 30(6): E784–E790, https://doi.org/10.1097/bsd.0000000000000406.
  59. Park S.W., Ko M.J., Kim Y.B., Le Huec J.C. Correction of marked sagittal deformity with circumferential minimally invasive surgery using oblique lateral interbody fusion in adult spinal deformity. J Orthop Surg Res 2020; 15(1): 13, https://doi.org/10.1186/s13018-020-1545-7.
  60. Kim W.J., Lee J.W., Park K.Y., Chang S.H., Song D.G., Choy W.S. Treatment of adult spinal deformity with sagittal imbalance using oblique lumbar interbody fusion: can we predict how much lordosis correction is possible? Asian Spine J 2019; 13(6): 1017–1027, https://doi.org/10.31616/asj.2018.0306.
  61. Kim K.T., Jo D.J., Lee S.H., Seo E.M. Oblique retroperitoneal approach for lumbar interbody fusion from L1 to S1 in adult spinal deformity. Neurosurg Rev 2018; 41(1): 355–363, https://doi.org/10.1007/s10143-017-0927-8.
  62. Wang B., Chen C., Hua W., Ke W., Lu S., Zhang Y., Zeng X., Yang C. Minimally invasive surgery oblique lumbar interbody debridement and fusion for the treatment of lumbar spondylodiscitis. Orthop Surg 2020; 12(4): 1120–1130, https://doi.org/10.1111/os.12711.
  63. Du X., Ou Y.S., Zhu Y., Luo W., Jiang G.Y., Jiang D.M. Oblique lateral interbody fusion combined percutaneous pedicle screw fixation in the surgical treatment of single-segment lumbar tuberculosis: a single-center retrospective comparative study. Int J Surg 2020; 83: 39–46, https://doi.org/10.1016/j.ijsu.2020.09.012.
Aleinik A.Ya., Mlyavykh S.G., Qureshi S. Lumbar Spinal Fusion Using Lateral Oblique (Pre-psoas) Approach (Review). Sovremennye tehnologii v medicine 2021; 13(5): 70, https://doi.org/10.17691/stm2021.13.5.09


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank