NGS-технология в мониторинге генетического разнообразия штаммов цитомегаловируса
Современные молекулярно-генетические методы, в частности массовое параллельное секвенирование (NGS), позволяют проводить генотипирование различных возбудителей с целью их эпидемиологического маркирования и совершенствования молекулярно-эпидемиологического надзора за актуальными инфекциями, включая цитомегаловирусную инфекцию.
Цель исследования — оценить возможности использования технологии NGS для генотипирования клинических изолятов цитомегаловируса (ЦМВ).
Материалы и методы. Объектом исследования являлись образцы биологических субстратов (лейкоцитарная масса, слюна, моча), взятые у пациентов, перенесших трансплантацию печени и почек. Для генотипирования были отобраны образцы ДНК ЦМВ. Детекцию этих образцов осуществляли методом ПЦР в режиме реального времени с применением коммерческих диагностических тест-систем «АмплиСенс CMV-FL» (ЦНИИЭ, Москва). Выделение ДНК проводили с использованием наборов «ДНК-сорб-АМ» и «ДНК-сорб-В» (ЦНИИЭ) в соответствии с инструкцией по применению. Оценку качества подготовленной библиотеки ДНК для секвенирования осуществляли с помощью системы капиллярного гель-электрофореза QIAxcel Advanced System (QIAGEN, Германия). Выравнивание и cборку нуклеотидных последовательностей проводили с использованием программного обеспечения CLC Genomics Workbench 5.5 (CLC bio, США). Анализ результатов секвенирования выполняли с помощью инструмента BLAST сервера NCBI.
Результаты. Генотип ЦМВ определяли по двум вариабельным генам UL55(gB), UL73(gN) с использованием технологии NGS на платформе-секвенаторе MiSeq (Illumina, США). На основе проведенных поисковых исследований и анализа источников литературы выбраны праймеры для генотипирования по генам UL55(gB) и UL73(gN) и определены оптимальные условия проведения ПЦР. Результаты секвенирования фрагментов генов UL55(gB) и UL73(gN) клинических изолятов ЦМВ, выделенных у реципиентов солидных органов, позволили определить генотипы вируса, среди которых доминирующими являются gB2, gN4c и gN4b. В ряде случаев выявлена ассоциация двух и трех генотипов ЦМВ.
Заключение. Применение технологии NGS для генотипирования штаммов ЦМВ может стать одним из основных методов молекулярной эпидемиологии ЦМВ-инфекции, так как позволяет получать достоверные результаты при существенном сокращении времени на проведение исследований.
- Жебрун А.Б., Куляшова Л.Б., Ермоленко К.Д., Закревская А.В. Распространенность герпесвирусных инфекций у детей и взрослых в С.-Петербурге по данным сероэпидемиологического исследования. Журнал микробиологии, эпидемиологии и иммунобиологии 2013; 6: 30–36.
- Дмитраченко Т.И., Горбачев В.В., Семенов В.М., Зенькова С.К., Шпигун Н.В. Реактивация цитомегаловирусной инфекции у пациентов в критическом состоянии. Вестник Витебского государственного медицинского университета 2018; 17(3): 25–37.
- Pignatelli S., Dal Monte Р., Rossini G., Landini M.P. Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 2004; 14(6): 383–410, https://doi.org/10.1002/rmv.438.
- Chou S.W., Dennison K.M. Analysis of interstrain variation in cytomegalovirus glycoprotein B sequences encoding neutralization related epitopes. J Infect Dis 1991; 163(6): 1229–1234, https://doi.org/10.1093/infdis/163.6.1229.
- Suárez N.M., Wilkie G.S., Hage E., Camiolo S., Holton M., Hughes J., Maabar M., Vattipally S.B., Dhingra A., Gompels U.A., Wilkinson G.W.G., Baldanti F., Furione M., Lilleri D., Arossa A., Ganzenmueller T., Gerna G., Hubáček P., Schulz T.F., Wolf D., Zavattoni M., Davison A.J. Human cytomegalovirus genomes sequenced directly from clinical material: variation, multiple-strain infection, recombination, and gene loss. J Infect Dis 2019; 220(5): 781–791, https://doi.org/10.1093/infdis/jiz208.
- Yan H., Koyano S., Inami Y., Yamamoto Y., Suzutani T., Mizuguchi M., Ushijima H., Kurane I., Inoue N. Genetic variations in the gB, UL144 and UL149 genes of human cytomegalovirus strains collected from congenitally and postnatally infected Japanese children. Arch Virol 2008; 153(4): 667–674, https://doi.org/10.1007/s00705-008-0044-7.
- Dolan A., Cunningham C., Hector R.D., Hassan-Walker A.F., Lee L., Addison C., Dargan D.J., McGeoch D.J., Gatherer D., Emery V.C., Griffiths P.D., Sinzger C., McSharry B.P., Wilkinson G.W.G., Davison A.J. Genetic content of wild-type human cytomegalovirus. J Gen Virol 2004; 85(Pt 5): 1301–1312, https://doi.org/10.1099/vir.0.79888-0.
- Brait N., Külekçi B., Goerzer I. Long range PCR-based deep sequencing for haplotype determination in mixed HCMV infections. BMS Genomics 2022; 23(1): 31, https://doi.org/10.1186/s12864-021-08272-z.
- Dhingra A., Götting J., Varanasi P.R., Steinbrueck L., Camiolo S., Zischke J., Heim A., Schulz T.F., Weissinger E.M., Kay-Fedorov P.C., Davison A.J., Suárez N.M., Ganzenmueller T. Human cytomegalovirus multiple-strain infections and viral population diversity in haematopoietic stem cell transplant recipients analysed by high-throughput sequencing. Med Microbiol Immunol 2021; 210(5–6): 291–304, https://doi.org/10.1007/s00430-021-00722-5.
- Martí-Carreras J., Maes P. Human cytomegalovirus genomics and transcriptomics through the lens of next-generation sequencing: revision and future challenges. Virus Genes 2019; 55(2): 138–164, https://doi.org/10.1007/s11262-018-1627-3.
- Pignatelli S., Dal Monte P., Rossini G., Chou S., Gojobori T., Hanada K., Guo J.J., Rawlinson W., Britt W., Mach M., Landini M.P. Human cytomegalovirus glycoprotein N (gpUL73-gN) genomic variants: identification of a novel subgroup, geographical distribution and evidence of positive selective pressure. J Gen Virol 2003; 84(Pt 3): 647–655, https://doi.org/10.1099/vir.0.18704-0.
- Dorado G., Gálvez S., Rosales T.E., Vásquez V.F., Hernández P. Analyzing modern biomolecules: the revolution of nucleic-acid sequencing — review. Biomolecules 2021; 11(8): 1111, https://doi.org/10.3390/biom11081111.
- Renzette N., Pokalyuk C., Gibson L., Bhattacharjee B., Schleiss M.R., Hamprecht K., Yamamoto A.Y., Mussi-Pinhata M.M., Britt W.J., Jensen J.D., Kowalik T.F. Limits and patterns of cytomegalovirus genomic diversity in humans. Proc Natl Acad Sci U S A 2015; 112(30): E4120–E4128, https://doi.org/10.1073/pnas.1501880112.
- Wu X.J., Wang Y., Zhu Z.L., Xu Y., He G.S., Han Y., Tang X.W., Fu Z.Z., Qiu H.Y., Sun A.N., Wu D.P. The correlation of cytomegalovirus gB genotype with viral DNA load and treatment time in patients with CMV infection after hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi 2013; 34(2): 109–112.
- de Albuquerque D.M., Costa S.C. Genotyping of human cytomegalovirus using non-radioactive single-strand conformation polymorphism (SSCP) analysis. J Virol Methods 2003; 110(1): 25–28, https://doi.org/10.1016/s0166-0934(03)00094-6.
- Barbi M., Binda S., Caroppo S., Calvario А., Germinario С., Bozzi А., Tanzi M.L., Veronesi L., Mura I., Piana А., Solinas G., Pugni L., Bevílaqua G., Mosca F. Multicity Italian study of congenital cytomegalovirus infection. Pediatr Infect Dis 2006; 25(2): 156–159, https://doi.org/10.1097/01.inf.0000199261.98769.29.
- Shepp D.H., Match М.Е., Lipson S.M., Pergolizzi R.G. A fifth human cytomegalovirus glycoprotein B genotype. Res Virol 1998; 149(2): 109–111, https://doi.org/10.1016/s0923-2516(98)80086-1.
- Grosjean J., Hantz S., Cotin S., Baclet M.C., Mengelle C., Trapes L., Virey B., Undreiner F., Brosset P., Pasquier C., Denis F., Alain S. Direct genotyping of cytomegalovirus envelope glycoproteins from toddler’s saliva samples. J Clin Virol 2009; 46 Suppl 4: S43–S48, https://doi.org/10.1016/j.jcv.2009.08.018.
- de Vries J.J., Wessels E., Korver A.M., van der Eijk A.A., Rusman L.G., Kroes A.C., Vossen A.C. Rapid genotyping of cytomegalovirus in dried blood spots by multiplex real-time PCR assays targeting the envelope glycoprotein gB and gH genes. J Clin Microbiol 2012; 50(2): 232–237, https://doi.org/10.1128/jcm.05253-11.
- Lisboa L.F., Tong Y., Kumar D., Pang X.L., Asberg A., Hartmann A., Rollag H., Jardine A.G., Pescovitz M.D., Humar A. Analysis and clinical correlation of genetic variation in cytomegalovirus. Transpl Infect Dis 2012; 14(2): 132–140, https://doi.org/10.1111/j.1399-3062.2011.00685.x.
- Jiang X.J., Zhang J., Xiong Y., Jahn G., Xiong H.R., Yang Z.Q., Liu Y.Y. Human cytomegalovirus glycoprotein polymorphisms and increasing viral load in AIDS patients. PLoS One 2017; 12(5): e0176160, https://doi.org/10.1371/journal.pone.0176160.
- Pignatelli S. Recent knowledges on the linkage of strain specific genotypes with clinical manifestations of human citomegalovirus disease. Recenti Prog Med 2011; 102(1): 5–10.
- Garcia de Figueiredo G., Marques A.A., Mussi-Pinhata M.M., Silva W.A. Jr., Yamamoto A.Y. Is the mixture of human cytomegalovirus genotypes frequent in infants with congenital infection at birth in a high seroprevalence population? J Med Virol 2018; 90(8): 1389–1397, https://doi.org/10.1002/jmv.25205.
- Külekci В., Schwarz S., Brait N., Perkmann-Nagele N., Jaksch P., Hoetzenecker K., Puchhammer-Stöckl E., Goerzer I. Human cytomegalovirus strain diversity and dynamics reveal the donor lung as a major contributor after transplantation. Virus Evol 2022; 8(2): veac076, https://doi.org/10.1093/ve/veac076.