Сегодня: 07.04.2025
RU / EN
Последнее обновление: 25.03.2025
Анализ эффективности прогностических моделей внутригоспитальной летальности у больных инфарктом миокарда с подъемом сегмента ST на основе предикторов в категориальной и непрерывной формах

Анализ эффективности прогностических моделей внутригоспитальной летальности у больных инфарктом миокарда с подъемом сегмента ST на основе предикторов в категориальной и непрерывной формах

К.И. Шахгельдян, Н.С. Куксин, И.Г. Домжалов, Б.И. Гельцер
Ключевые слова: прогностические модели; категоризация данных; инфаркт миокарда с подъемом сегмента ST; летальность; факторы риска; метод аддитивного объяснения Шепли.
2024, том 16, номер 1, стр. 15.

Полный текст статьи

html pdf
877
919

Цель исследования — оценить эффективность прогностических моделей, разработанных на основе предикторов в непрерывной и категориальной формах, для предсказания вероятности внутригоспитальной летальности (ВГЛ) у больных инфарктом миокарда с подъемом сегмента ST (ИМпST) после чрескожного коронарного вмешательства (ЧКВ).

Материалы и методы. Проведено одноцентровое ретроспективное исследование, в рамках которого анализировали данные 4674 историй болезни пациентов с ИМпST после ЧКВ, находившихся на лечении в Региональном сосудистом центре г. Владивостока. Выделено 2 группы больных: 1-ю составили 318 человек (6,8%), умерших в стационаре; 2-ю — 4356 пациентов (93,2%) с благоприятным исходом лечения. Прогностические модели ВГЛ были разработаны методами многофакторной логистической регрессии (МЛР), случайного леса (СЛ) и стохастического градиентного бустинга (СГБ). Для оценки точности моделей использовали 6 метрик качества. Пороговые значения предикторов ВГЛ определяли методами поиска на сетке оптимальных точек отсечения, расчета центроидов и аддитивного объяснения Шепли. С помощью последнего оценивали степень влияния предикторов на конечную точку.

Результаты. По результатам многоступенчатого анализа показателей клинико-функционального статуса больных ИМпST были выделены и валидированы новые предикторы ВГЛ, дополняющие факторы шкалы GRACE, выполнена их категоризация и разработаны прогностические модели с непрерывными и категориальными переменными на основе МЛР, СЛ и СГБ. Данные модели имели высокую (AUC — от 0,88 до 0,90) и сопоставимую точность прогноза, но их предикторы отличались различной степенью влияния на конечную точку. Сравнительный анализ показал, что метод аддитивного объяснения Шепли имеет пре­имущества при категоризации предикторов по сравнению с другими методами и позволяет детализировать структуру их взаимосвязей с ВГЛ.

Заключение. Использование современных методов интеллектуального анализа данных, включающих алгоритмы машинного обучения, категоризацию предикторов и оценку степени их влияния на конечную точку, позволяет разрабатывать прогностические модели, обладающие высокой точностью и свойствами объяснения генерируемых заключений.


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank