Функциональная анатомия сердца овцы как модель для испытания сердечно-сосудистых устройств
Цель исследования — оценить пригодность животной модели для доклинических испытаний имплантируемых кардиоваскулярных устройств путем изучения числовых анатомо-функциональных характеристик сердца овцы, установить отличия их от характеристик сердца человека.
Материалы и методы. Работа выполнена на 17 здоровых помесных овцах на основе романовской породы. В 1-й группе (n=7) масса тела составила 20–29 кг, во 2-й группе (n=10) — 30–43 кг. Всем животным выполняли эхоКГ-исследование на аппарате Philips CX50 (revision 3.1.2; Philips, Нидерланды) секторно-фазированным датчиком S5-1 из правой парастернальной проекции (по длинной и короткой осям) с определением частоты сердечных сокращений, толщины стенки правого желудочка в диастолу, конечно-диастолического размера правого и левого желудочков (КДР ПЖ и КДР ЛЖ), конечно-систолического размера левого желудочка (КСР ЛЖ), толщины межжелудочковой перегородки в систолу и диастолу, толщины задней стенки левого желудочка в систолу и диастолу.
Функциональные параметры левого желудочка: конечно-систолический и конечно-диастолический объем левого желудочка (КСО ЛЖ и КДО ЛЖ), фракцию выброса и фракцию укорочения — рассчитывали с использованием модифицированного метода Симпсона, «встроенного» в программное обеспечение эхоКГ-аппарата. Измеряли диаметр фиброзного кольца митрального клапана и параметры корня аорты: диаметры аортального клапана, синусов Вальсальвы и синотубулярного соединения, а также высоту корня аорты от фиброзного кольца до линии синотубулярного соединения.
После аутопсии выполняли прямые измерения диаметров восходящей аорты и ствола легочной артерии, межкомиссуральных расстояний и высоты створок аортального клапана.
Результаты. Установлено, что по ряду анатомо-функциональных показателей — фракции выброса, толщине миокарда, КДР ЛЖ и КСР ЛЖ, диаметрам аорты и ствола легочной артерии — сердце овцы очень близко к человеческому. В то же время КДО ЛЖ и КСО ЛЖ овцы значительно меньше, чем у человека, даже в соотношении с площадью поверхности тела, а диаметр митрального клапана в среднем больше.
Несмотря на сопоставимость диаметров аортального клапана, синусов Вальсальвы и синотубулярного соединения, строение корня аорты овцы и человека разное: у овцы меньше высота и межкомиссуральные расстояния створок. Кроме того, были обнаружены особенности в расположении створок по отношению к оси клапана: межкомиссуральное расстояние правой коронарной створки почти в 2 раза превышает аналогичный показатель левой коронарной створки.
Для большинства анатомо-функциональных показателей не обнаружено корреляционных связей с массой тела животных. Лишь во 2-й группе была выявлена значимая положительная корреляция между массой тела и высотой створок аортального клапана.
Заключение. Анатомо-функциональные характеристики сердца овцы близки к таковым человека, но не идентичны. Овца может служить валидной экспериментальной моделью для доклинических испытаний имплантируемых кардиоваскулярных устройств, однако для успешного эксперимента необходимы тщательный скрининг животных с эхоКГ-оценкой параметров таргетной зоны и выбор соответствующего ей типоразмера устройства.
- Blaser M.C., Kraler S., Lüscher T.F., Aikawa E. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circ Res 2021; 128(9): 1371–1397, https://doi.org/10.1161/CIRCRESAHA.120.317979.
- Bouma B.J., Mulder B.J. Changing landscape of congenital heart disease. Circ Res 2017; 120(6): 908–922, https://doi.org/10.1161/CIRCRESAHA.116.309302.
- Karimov J.H., Moazami N., Kobayashi M., Sale S., Such K., Byram N., Sunagawa G., Horvath D., Gao S., Kuban B., Golding L.A., Fukamachi K. First report of 90-day support of 2 calves with a continuous-flow total artificial heart. J Thorac Cardiovasc Surg 2015; 150(3): 687–693.e1, https://doi.org/10.1016/j.jtcvs.2015.06.023.
- Rusakova Y.L., Grankin D.S., Podolskaya K.S., Zhuravleva I.Y. Pigs as models to test cardiovascular devices. Biomedicines 2024; 12(6): 1245, https://doi.org/10.3390/biomedicines12061245.
- Барбараш Л.С., Клышников К.Ю., Хаес Б.Л., Халивопуло И.К., Стасев А.Н., Крутицкий С.С., Борисенко Д.В., Ситникова М.А., Иванова А.В., Кудрявцева Ю.А., Кокорин С.Г., Евтушенко А.В., Овчаренко Е.А. Первый опыт репротезирования митрального клапана с использованием системы бесшовной имплантации по методу «протез-в-протез»: двухэтапная имплантация на крупном животном. Бюллетень экспериментальной биологии и медицины 2019; 168(12): 783–787.
- Kim D.H., Morris B., Guerrero J.L., Sullivan S.M., Hung J., Levine R.A. Ovine model of ischemic mitral regurgitation. Methods Mol Biol 2018; 1816: 295–308, https://doi.org/10.1007/978-1-4939-8597-5_23.
- Van Hoof L., Claus P., Jones E.A.V., Meuris B., Famaey N., Verbrugghe P., Rega F. Back to the root: a large animal model of the Ross procedure. Ann Cardiothorac Surg 2021; 10(4): 444–453, https://doi.org/10.21037/acs-2020-rp-21.
- Sampath S., Klimas M., Feng D., Baumgartner R., Manigbas E., Liang A.L., Evelhoch J.L., Chin C.L. Characterization of regional left ventricular function in nonhuman primates using magnetic resonance imaging biomarkers: a test-retest repeatability and inter-subject variability study. PLoS One 2015; 10(5): e0127947, https://doi.org/10.1371/journal.pone.0127947.
- Cai J., Huang H., Zhou Y., Mei Y., Shao J., Wang Y. A new type of aortic valved stent with good stability and no influence on coronary artery. J Cardiothorac Surg 2013; 8: 210, https://doi.org/10.1186/1749-8090-8-210.
- Joudinaud T.M., Flecher E.M., Curry J.W., Kegel C.L., Weber P.A., Duran C.M. Sutureless stented aortic valve implantation under direct vision: lessons from a negative experience in sheep. J Card Surg 2007; 22(1): 13–17, https://doi.org/10.1111/j.1540-8191.2007.00337.x.
- Bai Y., Zong G.J., Wang Y.Y., Jiang H.B., Li W.P., Wu H., Zhao X.X., Qin Y.W. Percutaneous aortic valve replacement using a W-model valved stent: a preliminary feasibility study in sheep. Chin Med J (Engl) 2009; 122(6): 655–658.
- Acorda J.A., Pajas A.M.G. M-mode echocardiographic values in male and female Philippine sheep (Ovis aries) (Artiodactyla: Bovidae) by age and status of lactation and pregnancy. Philipp J Vet Med 2015; 52(1): 11–20.
- Hong T., Maish M.S., Cohen J., Fitzpatrick P., Bert A.A., Harper J.S. 3rd, Fang D., Hoffman-Kim D., Hopkins R.A. Reproducible echocardiography in juvenile sheep and its application in the evaluation of a pulmonary valve homograft implant. Contemp Top Lab Anim Sci 2000; 39(5): 20–25.
- Vloumidi E.I., Fthenakis G.C. Ultrasonographic examination of the heart in sheep. Small Ruminant Research 2017; 152: 119–127, https://doi.org/10.1016/j.smallrumres.2016.12.019.
- Poser H., Semplicini L., De Benedictis G.M., Gerardi G., Contiero B., Maschietto N., Valerio E., Milanesi O., Semplicini A., Bernardini D. Two-dimensional, M-mode and Doppler-derived echocardiographic parameters in sedated healthy growing female sheep. Lab Anim 2013; 47(3): 194–202, https://doi.org/10.1177/0023677213486895.
- Boon J.A. Two-dimensional and M-mode echocardiography for the small animal practitioner. Ames, Iowa: John Wiley & Sons Inc; 2017.
- Онкология мелких домашних животных. Под ред. Трофимцова Д.В., Вилковыского И.Ф. М: Издательский дом «Научная библиотека»; 2017.
- Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28(1): 1–39.e14, https://doi.org/10.1016/j.echo.2014.10.003.
- Petersen S.E., Khanji M.Y., Plein S., Lancellotti P., Bucciarelli-Ducci C. European Association of Cardiovascular Imaging expert consensus paper: a comprehensive review of cardiovascular magnetic resonance normal values of cardiac chamber size and aortic root in adults and recommendations for grading severity. Eur Heart J Cardiovasc Imaging 2019; 20(12): 1321–1331, https://doi.org/10.1093/ehjci/jez232.
- Vandroux D., Houehanou Y.C., Magne J., Saka D., Sonou A., Amidou S., Houinato D., Preux P.M., Aboyans V., Lacroix P. Normal reference values of cardiac chamber sizes and functional parameters in a beninese community population: the TAHES study. Int J Cardiovasc Imaging 2023; 39(9): 1729–1739, https://doi.org/10.1007/s10554-023-02892-0.
- Ricci F., Aung N., Gallina S., Zemrak F., Fung K., Bisaccia G., Paiva J.M., Khanji M.Y., Mantini C., Palermi S., Lee A.M., Piechnik S.K., Neubauer S., Petersen S.E. Cardiovascular magnetic resonance reference values of mitral and tricuspid annular dimensions: the UK Biobank cohort. J Cardiovasc Magn Reson 2020; 23(1): 5, https://doi.org/10.1186/s12968-020-00688-y.
- Beck L., Mohamed A.A., Strugnell W.E., Bartlett H., Rodriguez V., Hamilton-Craig C., Slaughter R.E. MRI measurements of the thoracic aorta and pulmonary artery. J Med Imaging Radiat Oncol 2018; 62(1): 64–71, https://doi.org/10.1111/1754-9485.12637.
- Matsushima S., Karliova I., Gauer S., Miyahara S., Schäfers H.J. Geometry of cusp and root determines aortic valve function. Indian J Thorac Cardiovasc Surg
- 2020; 36(Suppl 1): 64–70, https://doi.org/10.1007/s12055-019-00813-2.
- Svedenhag J., Larsson T.P., Lindqvist P., Olsson A., Rythén Alder E. Individual reference values for 2D echocardiographic measurements. The Stockholm — Umeå Study. Clin Physiol Funct Imaging 2015; 35(4): 275–282, https://doi.org/10.1111/cpf.12161.
- Wenzel J.P., Petersen E., Nikorowitsch J., Senftinger J., Sinning C., Theissen M., Petersen J., Reichenspurner H., Girdauskas E. Transthoracic echocardiographic reference values of the aortic root: results from the Hamburg City Health Study. Int J Cardiovasc Imaging 2021; 37(12): 3513–3524, https://doi.org/10.1007/s10554-021-02354-5.
- Jazwiec T., Malinowski M., Proudfoot A.G., Eberhart L., Langholz D., Schubert H., Wodarek J., Timek T.A. Tricuspid valvular dynamics and 3-dimensional geometry in awake and anesthetized sheep. J Thorac Cardiovasc Surg 2018; 156(4): 1503–1511, https://doi.org/10.1016/j.jtcvs.2018.04.065.
- Одинокова С.Н., Николенко В.Н., Комаров Р.Н., Винокуров И.А., Мнацаканян Г.В., Белхароева Р.Х. Корреляции морфометрических параметров структур корня аорты, имеющие практическое значение в хирургической коррекции аортального клапана. Морфологические ведомости 2020; 28(1): 30–36, https://doi.org/10.20340/mv-mn.2020.28(1):30-36.