Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
The Sensitivity of Hela Kyoto Cell Line Transfected with Sensor HyPer2 to Cisplatin

The Sensitivity of Hela Kyoto Cell Line Transfected with Sensor HyPer2 to Cisplatin

Belova A.S., Orlova A.G., Brilkina А.А., Maslennikova A.V.
Key words: cervical carcinoma cell line; transfected HeLa Kyoto cells; genetically-encoded sensor; HeLa Kyoto–HyPer2; cisplatin cytotoxicity.
2014, volume 6, issue 4, page 7.

Full text

html pdf
3436
2456

The aim of the investigation is to compare by means of MTT assay cytotoxic effect of cisplatin on the cells of HeLa Kyoto line and HeLa Kyoto line containing genetically-encoded sensor of hydrogen peroxide HyPer2 (HeLa Kyoto–HyPer2 line), and using staining by trypan blue to identify the doses of cisplatin causing cell death at different exposure time.

Materials and Methods. A HeLa Kyoto cell line of human cervical carcinoma and HeLa Kyota line transfected with the cytoplasmic sensor of hydrogen peroxide (HeLa Kyoto–HyPer2) were used in the study. The analysis of cytotoxic and antiproliferative action of cisplatin in relation to the given cells was performed using MTT assay. Cell viability was determined after 24 h of incubation with the preparation at concentrations from 0 to 50 μmol/L, then within the period from 0 to 24 h with an interval of 2 h at concentration of IC50; and also after 2, 4, 6, 8 h at concentrations from 9.3 to 833.3 μmol/L a quantity of live and destructed cells was counted using staining by trypan blue.

Results. After cisplatin expose the dose-response curves for cell viability of Hela Kyoto and HeLa Kyoto–HyPer2 cell lines were built according to MTT assay data. It was established that concentration of IC50 corresponding to the dose causing a loss of viability of 50% of cells is 1.3 times lower for HeLa Kyoto–HyPer2 compared to HeLa Kyoto. The results of staining by a vital agent trypan blue showed that inhibiting effects of cisplatin in concentration of IC50 by 24 h are mainly linked with the delay of cell division but not with their death. At concentrations up to 52 μmol/L damage of the membranes does not occur during 8 h, and at superhigh concentrations — 416.7 μmol/L — the damage is possible already 4 h after the exposure.

Conclusion. Comparison of sensibility of the two cell lines to the effect of cisplatin showed that transfection of the cells with the fluorescent protein results in the increase of the sensitivity to cisplatin. When HeLa Kyoto–HyPer2 cells are exposed to the preparation at concentration of IC50 during 24 h, inhibition of cell division is observed; higher concentrations of the preparation cause increase of the number of dead cells and diminish the terms of their destruction.

  1. Johnson N.P., Butour J.-L., Villani G., Wimmer F.L., Defais M., Pierson V., Brabec V. Metal anti-tumor compounds: the mechanism of action of platinum complexes. Prog Clin Biochem Med 1989; 10: 1–24.
  2. Itoh T., Terazawa R., Kojima K., Nakane K., Deguchi T., Ando M., Tsukamasa Y., Ito M., Nozawa Y. Cisplatin induces production of reactive oxygen species via NADPH oxidase activation in human prostate cancer cells. Free Radic Res 2011; 45(9): 1033–1039, http://dx.doi.org/10.3109/10715762.2011.591391.
  3. Katsuda H., Yamashita M., Katsura H., Yu J., Waki Y., Nagata N., Sai Y., Miyamoto K. Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol Pharm Bull 2010; 33(11): 1867–1871, http://dx.doi.org/10.1248/bpb.33.1867.
  4. Wang W., Fang H., Groom L., Cheng A., Zhang W., Liu J., Wang X., Li K., Han P., Zheng M., Yin J., Wang W., Mattson M.P., Kao J.P., Lakatta E.G., Sheu S.S., Ouyang K., Chen J., Dirksen R.T., Cheng H. Superoxide flashes in single mitochondria. Cell 2008; 134(2): 279–290, http://dx.doi.org/10.1016/j.cell.2008.06.017.
  5. Belousov V.V., Fradkov A.F., Lukyanov K.A., Staroverov D.B., Shakhbazov K.S., Terskikh A.V., Lukyanov S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 2006; 3(4): 281–286.
  6. Markvicheva K.N., Bogdanova E.A., Staroverov D.B., Lukyanov S., Belousov V.V. Imaging of intracellular hydrogen peroxide production with HyPer upon stimulation of HeLa cells with epidermal growth factor. Methods Mol Biol 2009; 476: 76–83.
  7. Pearce L.L., Gandley R.E., Han W., Wasserloos K., Stitt M., Kanai A.J., McLaughlin M.K., Pitt B.R., Levitan E.S. Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 2000; 97(1): 477–482, http://dx.doi.org/10.1073/pnas.97.1.477.
  8. Belova А.S., Mishina N.M., Orlova А.G., Sergeeva Е.А., Maslennikova А.V., Brilkina А.А., Shakhova N.М., Belousov V.V., Lukyanov S.А. The study of cisplatin effect on hydrogen peroxide and PH level in Hela Kyoto cell line using genetically-encoded sensors. Sovremennye tehnologii v medicine 2013; 5(4): 19–24.
  9. Belova A.S., Orlova A.G., Maslennikova A.V., Brilkina A.A., Balalaeva I.V., Antonova N.O., Mishina N.M., Shakhova N.M., Belousov V.V. The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor HyPer. Proceedings of SPIE 2014; 8956: 895612, http://dx.doi.org/10.1117/12.2037737.
  10. Goto H., Yang B., Petersen D., Pepper K.A., Alfaro P.A., Kohn D.B., Reynolds C.P. Transduction of green fluorescent protein increased oxidative stress and enhanced sensitivity to cytotoxic drugs in neuroblastoma cell lines. Mol Cancer Ther 2003; 2(9): 911–917.
  11. Greenbaum L., Rothmann C., Lavie R., Malik Z. Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. Biol Chem 2000; 381: 1251–1258, http://dx.doi.org/10.1515/BC.2000.153.
  12. Sancho-Martínez S.M., Piedrafita F.J., Cannata-Andía J.B., López-Novoa J.M., López-Hernández F.J. Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol Sci 2011; 122(1): 73–85, http://dx.doi.org/10.1093/toxsci/kfr098.
  13. Schwerdt G., Freudinger R., Schuster C., Weber F., Thews O., Gekle M. Cisplatin-induced apoptosis is enhanced by hypoxia and by inhibition of mitochondria in renal collecting duct cells. Toxicol Sci 2005; 85(1): 735–742, http://dx.doi.org/10.1093/toxsci/kfi117.
  14. Markvicheva K.N., Bilan D.S., Mishina N.M., Gorokhovatsky A.Yu., Vinokurov L.M., Lukyanov S., Belousov V.V. A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorganic & Medicinal Chemistry 2011; 19(3): 1079–1084, http://dx.doi.org/10.1016/j.bmc.2010.07.014.
  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1–2): 55–63, http://dx.doi.org/10.1016/0022-1759(83)90303-4.
  16. Louis K.S., Siegel A.C. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol 2011; 740: 7–12, http://dx.doi.org/ 10.1007/978-1-61779-108-6_2.
  17. Freshni R.Ya. Kul’tura zhivotnykh kletok [Animal cell culture]. Moscow: BINOM. Laboratoriya znaniy; 2010; 691 р.
  18. Komleva N.V., Kostyuk G.V., Parkhomenko I.I., Balalaeva I.V., Golubev V.A., Sen V.D., Terentev A.A. Comparative analysis of cytotoxicity and the effect of platinum (IV) complexes with aminonitroxyl radicals on the cell cycle. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo 2011; 2(2): 82–89.
Belova A.S., Orlova A.G., Brilkina А.А., Maslennikova A.V. The Sensitivity of Hela Kyoto Cell Line Transfected with Sensor HyPer2 to Cisplatin. Sovremennye tehnologii v medicine 2014; 6(4): 7


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank