Сегодня: 22.12.2024
RU / EN
Последнее обновление: 30.10.2024
Разработка методики наблюдения экспериментальных опухолей с помощью многофункциональной оптической когерентной томографии: выбор оптимальной модели опухоли

Разработка методики наблюдения экспериментальных опухолей с помощью многофункциональной оптической когерентной томографии: выбор оптимальной модели опухоли

М.А. Сироткина, Н.Л. Буянова, Т.И. Калганова, М.М. Карабут, В.В. Елагин, С.С. Кузнецов, Л.Б. Снопова, Г.В. Геликонов, В.Ю. Зайцев, Л.А. Матвеев, Е.В. Загайнова, A. Vitkin, Н.Д. Гладкова
Ключевые слова: экспериментальная опухолевая модель; аденокарцинома кишечника мышей Colo-26; оптическая когерентная томография; ОКТ; кросс-поляризационная ОКТ; микроангиографическая ОКТ.
2015, том 7, номер 2, стр. 6.

Полный текст статьи

html pdf
2485
1954

Цель исследования — изучение особенностей трансплантации, роста и визуализации экспериментальных опухолей животных с помощью многофункциональной оптической когерентной томографии (ОКТ) для разработки методики оценки индивидуального ответа опухоли на противоопухолевую терапию.

Материалы и методы. Исследования выполнены на экспериментальной установке скоростной спектральной многофункциональной ОКТ, разработанной в ИПФ РАН (Россия). Характеристики установки: скорость получения информации — 20 000 А-сканов в секунду; длина волны — 1,3 мкм; размер кадра ~4×2 мм; поперечное разрешение — 25 мкм; разрешение по глубине — 10 мкм. Оценивали кросс-поляризационные (КП) и микроангиографические (МА) ОКТ-изображения.

Проведено ОКТ-исследование экспериментальной опухолевой модели аденокарциномы кишечника Colo-26 (прививаемой суспензией культуры опухолевых клеток), трансплантированной подкожно на бедре, внутрикожно на ушной раковине и в «окне» в кожную складку на спине мышей линии BALB/с. В случае глубокого подкожного залегания узла работали на открытом кожном лоскуте. КП ОКТ-изображения сопоставляли с гистологическими препаратами (окраска гематоксилином и эозином).

Результаты. Установлено, что подкожно развивающаяся опухоль Colo-26 непригодна для мониторинговых ОКТ-исследований. Применение технологии «открытого кожного лоскута» позволило существенно увеличить глубину визуализации, однако использование этой техники не подходит для ежедневного ОКТ-мониторинга. Модель опухоли в «окне» оптимальна для визуализации сосудов методом ОКТ. Однако наблюдаемые в отдельных случаях воспаление и отек в области опухоли затрудняют МА ОКТ-исследование. Поверхностная опухоль на внешней поверхности уха мыши доступна для ОКТ-исследования на всю глубину, если ее размер в толщину не превышает 1,5 мм. Опухолевая модель на ушной раковине удобна и физиологична для исследования состояния сосудов в ходе роста опухоли.

Заключение. Оптимальной опухолевой моделью для динамического многофункционального ОКТ-наблюдения является опухоль на ушной раковине. Она в отличие от модели на бедре характеризуется поверхностным залеганием узла, хорошо доступным для визуализации. Опухоль, развивающуюся на ухе, можно изучать в динамике, что невозможно сделать на «открытой» опухоли. Опухоль в «окне» также может быть использована для исследования, однако мониторинг роста ограничен ее размером (5–7 мм) ввиду выхода узла за пределы «окна» за счет недостаточной эластичности кожи мышей данной линии.

  1. Von Minckwitz G., Untch M., Blohmer J.-U., Costa S.D., Eidtmann H., Fasching P.A., Gerber B., Eiermann W., Hilfrich J., Huober J., Jackisch C., Kaufmann M., Konecny G.E., Denkert C., Nekljudova V., Mehta K., Loibl S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30(15): 1796–1804, http://dx.doi.org/10.1200/JCO.2011.38.8595.
  2. Vaupel P. Prognostic potential of the pre-therapeutic tumor oxygenation status. Adv Exp Med Biol 2009; 645: 241–246, http://dx.doi.org/10.1007/978-0-387-85998-9_36.
  3. Yoo S.Y., Kim J.-S., Sung K.W., Jeon T.Y., Choi J.Y., Moon S.H., Son M.H., Lee S.H., Yoo K.H., Koo H.H. The degree of tumor volume reduction during the early phase of induction chemotherapy is an independent prognostic factor in patients with high-risk neuroblastoma. Cancer 2013; 119(3): 656–664, http://dx.doi.org/10.1002/cncr.27775.
  4. Standish B.A., Lee K.K.C., Jin X., Mariampillai A., Munce N.R., Wood M.F.G., Wilson B.C., Vitkin I.A., Yang V.X.D. Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res 2008; 68(23): 9987–9995, http://dx.doi.org/10.1158/0008-5472.CAN-08-1128.
  5. Davoudi B., Morrison M., Bizheva K., Yang V.X.D., Dinniwell R., Levin W., Vitkin I.A. Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients. J Biomed Opt 2013; 18(7): 076008, http://dx.doi.org/10.1117/1.jbo.18.7.076008.
  6. Zaitsev V.Yu., Gelikonov V.M., Matveev L.A., Gelikonov G.V., Matveyev A.L., Shilyagin P.A., Vitkin I.A. Recent trends in multimodal optical coherence tomography. I. Polarization-sensitive OCT and conventional approaches to OCT elastography. Radiophysics and Quantum Electronics 2014; 57(1): 52–66, http://dx.doi.org/10.1007/s11141-014-9493-x.
  7. Zaitsev V.Yu., Vitkin I.A., Matveev L.A., Gelikonov V.M., Matveyev A.L., Gelikonov G.V. Recent trends in multimodal optical coherence tomography. II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics 2014; 57(3): 210–225, http://dx.doi.org/10.1007/s11141-014-9505-x.
  8. Daenen L.G.M., Roodhart J.M.L., van Amersfoort M., Dehnad M., Roessingh W., Ulfman L.H., Derksen P.W.B., Voest E.E. Chemotherapy enhances metastasis formation via VEGFR-1–expressing endothelial cells. Cancer Res 2011; 71(22): 6976–6985, http://dx.doi.org/10.1158/0008-5472.can-11-0627.
  9. Lee W.-C., Chang C.-H., Ho C.-L., Chen L.-C., Wu Y.-H., Chen J.-T., Wang Y.-L., Lee T.-W. Early detection of tumor response by FLT/MicroPET imaging in a C26 Murine colon carcinoma solid tumor animal model. J Biomed Biotechnol 2011, http://dx.doi.org/10.1155/2011/535902.
  10. Park H., Na K. Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy. Biomaterials 2013; 34(28): 6992–7000, http://dx.doi.org/10.1016/j.biomaterials.2013.05.070.
  11. Gobin A.M., Lee M.H., Halas N.J., James W.D., Drezek R.A., West J.L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. NanoLetters 2007; 7(7): 1929–1934, http://dx.doi.org/10.1021/nl070610y.
  12. Song H.-W., Lee S.-W., Jung M.-H., Kim K.R., Yang S., Won Park J., Jeong M.-S., Jung M.Y., Kim S. Optical monitoring of tumors in BALB/c nude mice using optical coherence tomography. Journal of the Optical Society of Korea 2013; 17(1): 91–96, http://dx.doi.org/10.3807/josk.2013.17.1.091.
  13. Skala M.C., Fontanella A., Hendargo H., Dewhirst M.W., Izatt J.A. Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging. Opt Lett 2009; 34(3): 289–291, http://dx.doi.org/10.1364/ol.34.000289.
  14. Leitgeb R., Hitzenberger C., Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003; 11(8): 889–894, http://dx.doi.org/10.1364/oe.11.000889.
  15. Gelikonov V.M., Gelikonov G.V., Shilyagin P.A. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Optics and Spectroscopy 2009; 106(3): 459–465, http://dx.doi.org/10.1134/s0030400x09030242.
  16. Gelikonov V.M., Gelikonov G.V., Kasatkina I.V., Terpelov D.A., Shilyagin P.A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy 2009; 106(6): 895–900, http://dx.doi.org/10.1134/s0030400x09060174.
  17. Gelikonov V.M., Gelikonov G.V., Terpelov D.A., Shabanov D.V., Shilyagin P.A. Suppression of image autocorrelation artefacts in spectral domain optical coherence tomography and multiwave digital holography. Quantum Electronics 2012; 42(5): 390, http://dx.doi.org/10.1070/QE2012v042n05ABEH014852.
  18. Shilyagin P.A., Gelikonov G.V., Gelikonov V.M., Moiseev A.A., Terpelov D.A. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography. Quantum Electronics 2014; 44(7): 664, http://dx.doi.org/10.1070/QE2014v044n07ABEH015465.
  19. Gelikonov V.M., Gelikonov G.V. New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Phys Lett 2006; 3(9): 445–451, http://dx.doi.org/10.1002/lapl.200610030.
  20. Matveev L.A., Zaitsev V.Yu., Gelikonov G.V., Matveyev A.L., Moiseev A.A., Ksenofontov S.Yu., Gelikonov V.M., Sirotkina M.A., Gladkova N.D., Demidov V., Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Opt Lett 2015; 40(7): 1472–1475, http://dx.doi.org/10.1364/ol.40.001472.
  21. Li C.-Y., Shan S., Huang Q., Braun R.D., Lanzen J., Hu K., Lin P., Dewhirst M.W. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Nat Cancer Inst 2000; 92(2): 143–147, http://dx.doi.org/10.1093/jnci/92.2.143.
  22. Приказ Минздравсоцразвития РФ от 23.08.2010 №708н «Об утверждении Правил лабораторной практики».
  23. Международные рекомендации (этический кодекс) по проведению медико-биологических исследований с использованием животных. 1985.
  24. Kiseleva Е., Kirillin M., Feldchtein F., Vitkin A., Sergeeva E., Zagaynova E., Streltzova O., Shakhov B., Gubarkova E., Gladkova N. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomed Opt Express 2015; 6(4): 1464–1476, http://dx.doi.org/10.1364/BOE.6.001464.
  25. Kirillin M.Yu., Farhat G., Sergeeva E.A., Kolios M.C., Vitkin A. Speckle statistics in OCT images: Monte Carlo simulations and experimental studies. Opt Lett 2014; 39(12): 3472–3475, http://dx.doi.org/10.1364/ol.39.003472.
  26. Mariampillai A., Standish B.A., Moriyama E.H., Khurana M., Munce N.R., Leung M.K.K., Jiang J., Cable A., Wilson B.C., Vitkin I.A., Yang V.X.D. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 2008; 33(13): 1530–1532, http://dx.doi.org/10.1364/ol.33.001530.
  27. Mariampillai A., Leung M.K.K., Jarvi M., Standish B.A., Lee K., Wilson B.C., Vitkin A., Yang V.X.D. Optimized speckle variance OCT imaging of microvasculature. Opt Lett 2010; 35(8): 1257–1259, http://dx.doi.org/10.1364/ol.35.001257.
Sirotkina М.А., Buyanova N.L., Kalganova Т.I., Karabut М.М., Elagin V.V., Kuznetsov S.S., Snopova L.B., Gelikonov G.V., Zaitsev V.Yu., Matveev L.А., Zagaynova E.V., Vitkin A., Gladkova N.D. The Development of the Methodology of Monitoring Experimental Tumors Using Multimodal Optical Coherence Tomography: the Choice of an Optimal Tumor Model . Sovremennye tehnologii v medicine 2015; 7(2): 6, https://doi.org/10.17691/stm2015.7.2.01


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank