Сегодня: 19.06.2025
RU / EN
Последнее обновление: 30.04.2025
Композитный тканеинженерный сосудистый протез малого диаметра на основе поликапролактона и полиуретана с ростовыми факторами и атромбогенным лекарственным покрытием: структурные и физико-механические характеристики

Композитный тканеинженерный сосудистый протез малого диаметра на основе поликапролактона и полиуретана с ростовыми факторами и атромбогенным лекарственным покрытием: структурные и физико-механические характеристики

Е.А. Сенокосова, Е.С. Прокудина, Е.О. Кривкина, Т.В. Глушкова, Е.А. Великанова, М.Ю. Ханова, Е.А. Торгунакова, В.Г. Матвеева, Л.В. Антонова
Ключевые слова: тканеинженерный сосудистый протез; полиуретан; поликапролактон; электроспиннинг.
2024, том 16, номер 5, стр. 18.

Полный текст статьи

html pdf
788
599

Существует растущая потребность в синтетических сосудистых протезах малого диаметра (<6 мм) для шунтирующих операций, поскольку большинство представленных в настоящее время изделий демонстрируют неприемлемую частоту тромбо­образования в преклинических испытаниях. Собственная разработка композитного сосудистого протеза основана на нетканом полимерном материале с атромбогенной активностью, антианевризматическим усилением и функциональной активностью, направленной на стимулирование образования сосудистой неоткани в локации имплантации сосудистого протеза.

Цель исследования — изучить морфологию поверхности, физические и механические характеристики тканеинженерных сосудистых протезов малого диаметра на основе поликапролактона (PCL) и полиуретана (PU) с ростовыми факторами и атромбогенным лекарственным покрытием.

Материалы и методы. Композитные сосудистые протезы на основе PCL и PU с миксом ростовых факторов (GFmix) изготовлены методом электроспиннинга. Гидрогелевое покрытие с илопростом (Ilo) и гепарином (Hep) сформировано посредством комплексообразования через поливинилпирролидон. В роли групп сравнения выступили многослойные сосудистые протезы аналогичного компонентного состава и нетканые матриксы на основе 12% PCL и 12% PU. Структуру поверхности изучали методом сканирующей электронной микроскопии на микроскопе S-3400N (Hitachi, Япония). Физические свойства поверхности определяли методом краевого угла смачивания. Механические свойства изделий оценивали на универсальной испытательной машине серии Z (Zwick/Roell, Германия). Статистическую обработку проводили в программе GraphPad Prism 8.

Результаты. Новая технология изготовления композитного PU/PCL/GFmix/Ilo/Hep-протеза исключила расслоение стенки изделия. Структура внутренней поверхности состояла из переплетенных микро- (толщина — 1,34 [1,15; 2,28] мкм) и нановолокон (толщина — 790,0 [604,0; 853,5] нм), а также взаимопроникающих пор разного диаметра (5,4 [3,8; 8,4] мкм). Процесс формирования лекарственного покрытия не повлиял на волокна и не запаял поры, поверхность сохранила гидрофильные свойства (θ=68,61±11,85°). Напряжение (3,45 [3,17; 4,03] МПа) и модуль Юнга (4,88 [3,95; 5,80] МПа) PU/PCL/GFmix/Ilo/Hep были более приближены к внутренней грудной артерии человека в сравнении с многослойным аналогом. PU/PCL/GFmix/Ilo/Hep-протезы отличались снижением излишней эластичности до 118,0 [111,0; 125,0]% в сравнении с многослойными PCL/PU/GFmix/Ilo/Hep-протезами (р=0,043).

Заключение. Композитный функционально активный сосудистый протез PU/PCL/GFmix/Ilo/Hep обладает улучшенными характеристиками и, соответственно, комплаенсом, что в свою очередь увеличит шансы высокой проходимости в преклинических испытаниях.


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank