Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Композитный тканеинженерный сосудистый протез малого диаметра на основе поликапролактона и полиуретана с ростовыми факторами и атромбогенным лекарственным покрытием: структурные и физико-механические характеристики

Композитный тканеинженерный сосудистый протез малого диаметра на основе поликапролактона и полиуретана с ростовыми факторами и атромбогенным лекарственным покрытием: структурные и физико-механические характеристики

Е.А. Сенокосова, Е.С. Прокудина, Е.О. Кривкина, Т.В. Глушкова, Е.А. Великанова, М.Ю. Ханова, Е.А. Торгунакова, В.Г. Матвеева, Л.В. Антонова
Ключевые слова: тканеинженерный сосудистый протез; полиуретан; поликапролактон; электроспиннинг.
2024, том 16, номер 5, стр. 18.

Полный текст статьи

html pdf
287
289

Существует растущая потребность в синтетических сосудистых протезах малого диаметра (<6 мм) для шунтирующих операций, поскольку большинство представленных в настоящее время изделий демонстрируют неприемлемую частоту тромбо­образования в преклинических испытаниях. Собственная разработка композитного сосудистого протеза основана на нетканом полимерном материале с атромбогенной активностью, антианевризматическим усилением и функциональной активностью, направленной на стимулирование образования сосудистой неоткани в локации имплантации сосудистого протеза.

Цель исследования — изучить морфологию поверхности, физические и механические характеристики тканеинженерных сосудистых протезов малого диаметра на основе поликапролактона (PCL) и полиуретана (PU) с ростовыми факторами и атромбогенным лекарственным покрытием.

Материалы и методы. Композитные сосудистые протезы на основе PCL и PU с миксом ростовых факторов (GFmix) изготовлены методом электроспиннинга. Гидрогелевое покрытие с илопростом (Ilo) и гепарином (Hep) сформировано посредством комплексообразования через поливинилпирролидон. В роли групп сравнения выступили многослойные сосудистые протезы аналогичного компонентного состава и нетканые матриксы на основе 12% PCL и 12% PU. Структуру поверхности изучали методом сканирующей электронной микроскопии на микроскопе S-3400N (Hitachi, Япония). Физические свойства поверхности определяли методом краевого угла смачивания. Механические свойства изделий оценивали на универсальной испытательной машине серии Z (Zwick/Roell, Германия). Статистическую обработку проводили в программе GraphPad Prism 8.

Результаты. Новая технология изготовления композитного PU/PCL/GFmix/Ilo/Hep-протеза исключила расслоение стенки изделия. Структура внутренней поверхности состояла из переплетенных микро- (толщина — 1,34 [1,15; 2,28] мкм) и нановолокон (толщина — 790,0 [604,0; 853,5] нм), а также взаимопроникающих пор разного диаметра (5,4 [3,8; 8,4] мкм). Процесс формирования лекарственного покрытия не повлиял на волокна и не запаял поры, поверхность сохранила гидрофильные свойства (θ=68,61±11,85°). Напряжение (3,45 [3,17; 4,03] МПа) и модуль Юнга (4,88 [3,95; 5,80] МПа) PU/PCL/GFmix/Ilo/Hep были более приближены к внутренней грудной артерии человека в сравнении с многослойным аналогом. PU/PCL/GFmix/Ilo/Hep-протезы отличались снижением излишней эластичности до 118,0 [111,0; 125,0]% в сравнении с многослойными PCL/PU/GFmix/Ilo/Hep-протезами (р=0,043).

Заключение. Композитный функционально активный сосудистый протез PU/PCL/GFmix/Ilo/Hep обладает улучшенными характеристиками и, соответственно, комплаенсом, что в свою очередь увеличит шансы высокой проходимости в преклинических испытаниях.

  1. Tinica G., Chistol R.O., Enache M., Leon Constantin M.M., Ciocoiu M., Furnica C. Long-term graft patency after coronary artery bypass grafting: effects of morphological and pathophysiological factors. Anatol J Cardiol 2018; 20(5): 275–282, https://doi.org/10.14744/AnatolJCardiol.2018.51447.
  2. Virani S.S., Alonso A., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Delling F.N., Djousse L., Elkind M.S.V., Ferguson J.F., Fornage M., Khan S.S., Kissela B.M., Knutson K.L., Kwan T.W., Lackland D.T., Lewis T.T., Lichtman J.H., Longenecker C.T., Loop M.S., Lutsey P.L., Martin S.S., Matsushita K., Moran A.E., Mussolino M.E., Perak A.M., Rosamond W.D., Roth G.A., Sampson U.K.A., Satou G.M., Schroeder E.B., Shah S.H., Shay C.M., Spartano N.L., Stokes A., Tirschwell D.L., VanWagner L.B., Tsao C.W.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics — 2020 Update: a report from the American Heart Association. Circulation 2020; 141(9): e139–e596, https://doi.org/10.1161/CIR.0000000000000757.
  3. Pashneh-Tala S., MacNeil S., Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev 2016; 22(1): 68–100, https://doi.org/10.1089/ten.teb.2015.0100.
  4. Lejay A., Bratu B., Kuntz S., Neumann N., Heim F., Chakfé N. Calcification of synthetic vascular grafts: a systematic review. EJVES Vasc Forum 2023; 60: 1–7, https://doi.org/10.1016/j.ejvsvf.2023.05.013.
  5. Yu L., Newton E.R., Gillis D.C., Sun K., Cooley B.C., Keith A.N., Sheiko S.S., Tsihlis N.D., Kibbe M.R. Coating small-diameter ePTFE vascular grafts with tunable poly(diol-co-citrate-co-ascorbate) elastomers to reduce neointimal hyperplasia. Biomater Sci 2021; 9(15): 5160–5174, https://doi.org/10.1039/d1bm00101a.
  6. Zhang B., Xu Y., Ma S., Wang L., Liu C., Xu W., Shi J., Qiao W., Yang H. Small-diameter polyurethane vascular graft with high strength and excellent compliance. J Mech Behav Biomed Mater 2021; 121: 104614, https://doi.org/10.1016/j.jmbbm.2021.104614.
  7. Moreno M.J., Ajji A., Mohebbi-Kalhori D., Rukhlova M., Hadjizadeh A., Bureau M.N. Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold. J Biomed Mater Res B Appl Biomater 2011; 97(2): 201–214, https://doi.org/10.1002/jbm.b.31774.
  8. Кривкина Е.О., Антонова Л.В. Результаты долго­срочной проходимости биодеградируемых сосудистых протезов малого диаметра с атромбогенным лекарственным покрытием на модели овцы. Комплексные проблемы сердечно-сосудистых заболеваний 2021; 10(2): 36–39, https://doi.org/10.17802/2306-1278-2021-10-2S-36-39.
  9. Lee K.S., Kayumov M., Emechebe G.A., Kim D.W., Cho H.J., Jeong Y.J., Lee D.W., Park J.K., Park C.H., Kim C.S., Obiweluozor F.O., Jeong I.S. A comparative study of an anti-thrombotic small-diameter vascular graft with commercially available e-PTFE graft in a porcine carotid model. Tissue Eng Regen Med 2022; 19(3): 537–551, https://doi.org/10.1007/s13770-021-00422-4.
  10. Lin C.H., Hsia K., Ma H., Lee H., Lu J.H. In vivo performance of decellularized vascular grafts: a review article. Int J Mol Sci 2018; 19(7): 2101, https://doi.org/10.3390/ijms19072101.
  11. van de Laar B.C., van Heusden H.C., Pasker-de Jong P.C., van Weel V. Omniflow II biosynthetic grafts versus expanded polytetrafluoroethylene grafts for infrainguinal bypass surgery. A single-center retrospective analysis. Vascular 2022; 30(4): 749–758, https://doi.org/10.1177/17085381211029815.
  12. Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Ya.L., Barbarash L.S. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases 2018; 7(2): 25–36, https://doi.org/10.17802/2306-1278-2018-7-2-25-36.
  13. Tan W., Boodagh P., Selvakumar P.P., Keyser S. Strategies to counteract adverse remodeling of vascular graft: a 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10: 1097334, https://doi.org/10.3389/fbioe.2022.1097334.
  14. Xie X., Wu Q., Liu Y., Chen C., Chen Z., Xie C., Song M., Jiang Z., Qi X., Liu S., Tang Z., Wu Z. Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized small-diameter vascular grafts by modulating the local inflammatory response. Front Bioeng Biotechnol 2022; 10: 1066266, https://doi.org/10.3389/fbioe.2022.1066266.
  15. Zhang Q., Bosch-Rué È., Pérez R.A., Truskey G.A. Biofabrication of tissue engineering vascular systems. APL Bioeng 2021; 5(2): 021507, https://doi.org/10.1063/5.0039628.
  16. Antonova L.V., Sevostianova V.V., Silnikov V.N., Krivkina E.O., Velikanova E.A., Mironov A.V., Shabaev A.R., Senokosova E.A., Khanova M.Y., Glushkova T.V., Akentieva T.N., Sinitskaya A.V., Markova V.E., Shishkova D.K., Lobov A.A., Repkin E.A., Stepanov A.D., Kutikhin A.G., Barbarash L.S. Comparison of the patency and regenerative potential of biodegradable vascular prostheses of different polymer compositions in an ovine model. Int J Mol Sci 2023; 24(10): 8540, https://doi.org/10.3390/ijms24108540.
  17. Antonova L.V., Silnikov V.N., Sevostyanova V.V., Yuzhalin A.E., Koroleva L.S., Velikanova E.A., Mironov A.V., Godovikova T.S., Kutikhin A.G., Glushkova T.V., Serpokrylova I.Y., Senokosova E.A., Matveeva V.G., Khanova M.Y., Akentyeva T.N., Krivkina E.O., Kudryavtseva Y.A., Barbarash L.S. Biocompatibility of small-diameter vascular grafts in different modes of RGD modification. Polymers (Basel) 2019; 11(1): 174, https://doi.org/10.3390/polym11010174.
  18. Ding K., Yu X., Wang D., Wang X., Li Q. Small diameter expanded polytetrafluoroethylene vascular graft with differentiated inner and outer biomacromolecules for collaborative endothelialization, anti-thrombogenicity and anti-inflammation. Colloids Surf B Biointerfaces 2023; 229: 113449, https://doi.org/10.1016/j.colsurfb.2023.113449.
  19. Matsushita H., Hayashi H., Nurminsky K., Dunn T., He Y., Pitaktong I., Koda Y., Xu S., Nguyen V., Inoue T., Rodgers D., Nelson K., Johnson J., Hibino N. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model. JVS Vasc Sci 2022; 3: 182–191, https://doi.org/10.1016/j.jvssci.2022.01.002.
  20. Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 2018; 60(7): 506–532, https://doi.org/10.1007/s12033-018-0084-5.
  21. Kucinska-Lipka J., Gubanska I., Janik H., Sienkiewicz M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C Mater Biol Appl 2015; 46: 166–176, https://doi.org/10.1016/j.msec.2014.10.027.
  22. Tatai L., Moore T.G., Adhikari R., Malherbe F., Jayasekara R., Griffiths I., Gunatillake P.A. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007; 28(36): 5407–5417, https://doi.org/10.1016/j.biomaterials.2007.08.035.
  23. Hergenrother R.W., Wabers H.D., Cooper S.L. Effect of hand segment chemistry and strain on the stability of polyurethanes: in vivo biostability. Biomaterials 1993; 14(6): 449–458, https://doi.org/10.1016/0142-9612(93)90148-u.
  24. Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Ya.L., Barbarash L.S. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases 2018; 7(2): 25–36, https://doi.org/10.17802/2306-1278-2018-7-2-25-36.
  25. Matsuzaki Y., Miyamoto S., Miyachi H., Iwaki R., Shoji T., Blum K., Chang Y.C., Kelly J., Reinhardt J.W., Nakayama H., Breuer C.K., Shinoka T. Improvement of a novel small-diameter tissue-engineered arterial graft with heparin conjugation. Ann Thorac Surg 2021; 111(4): 1234–1241, https://doi.org/10.1016/j.athoracsur.2020.06.112.
  26. Антонова Л.В., Севостьянова В.В., Резвова М.А., Кривкина Е.О., Кудрявцева Ю.А., Барбараш О.Л., Бар­ба­раш Л.С. Технология изготовления функционально активных биодеградируемых сосудистых протезов малого диаметра с лекарственным покрытием. Патент RU 2702239C1. 2019.
  27. Rickel A.P., Deng X., Engebretson D., Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 2021; 129: 112373, https://doi.org/10.1016/j.msec.2021.112373.
  28. Zhao L., Li X., Yang L., Sun L., Mu S., Zong H., Li Q., Wang F., Song S., Yang C., Zhao C., Chen H., Zhang R., Wang S., Dong Y., Zhang Q. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. Mater Sci Eng C Mater Biol Appl 2021; 118: 111441, https://doi.org/10.1016/j.msec.2020.111441.
  29. Antonova L.V., Krivkina E.O., Sevostianova V.V., Mironov A.V., Rezvova M.A., Shabaev A.R., Tkachenko V.O., Krutitskiy S.S., Khanova M.Y., Sergeeva T.Y., Matveeva V.G., Glushkova T.V., Kutikhin A.G., Mukhamadiyarov R.A., Deeva N.S., Akentieva T.N., Sinitsky M.Y., Velikanova E.A., Barbarash L.S. Tissue-engineered carotid artery interposition grafts demonstrate high primary patency and promote vascular tissue regeneration in the ovine model. Polymers (Basel) 2021; 13(16): 2637, https://doi.org/10.3390/polym13162637.
  30. Антонова Л.В., Кривкина Е.О., Сильников В.Н., Груз­дева О.В., Резвова М.А., Акентьева Т.Н., Глуш­кова Т.В., Ткаченко В.О., Сахарова В.М., Барбараш Л.С. Оценка биосовместимости и антимикробных свойств био­деградируемых сосудистых протезов различного полимерного состава с атромбогенным и противомикробным лекарственным покрытием. Вестник трансплантологии и искусственных органов 2021; 23(2): 122–136, https://doi.org/10.15825/1995-1191-2021-2-122-136.
Senokosova E.A., Prokudina Е.S., Krivkina Е.О., Glushkova T.V., Velikanova Е.А., Khanova M.Yu., Torgunakova Е.А., Matveeva V.G., Antonova L.V. Composite Tissue-Engineered Small-Diameter Vascular Grafts Based on Polycaprolactone and Polyurethane with Growth Factors and Atrombogenic Drug Coatings: Surface Ultrastructure, Physical and Mechanical Properties. Sovremennye tehnologii v medicine 2024; 16(5): 18, https://doi.org/10.17691/stm2024.16.5.02


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank